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I. Минимизация ДНФ и
связанные с ней задачи



1. Представление функций
алгебры логики (ФАЛ)

дизъюнктивными
нормальными формами

(ДНФ) и его
«геометрическая»

интерпретация. Совершенная
ДНФ и критерий

единственности ДНФ



Утверждение 1.1. Совершенная ДНФ
ФАЛ f , f 6≡ 0, f ∈ P2(n), является

единственной ДНФ от БП X (n), которая
реализует эту ФАЛ, тогда и только тогда,

когда во множестве Nf нет соседних наборов.

Следствие. Совершенная ДНФ ФАЛ `, `,
является единственной ДНФ этой ФАЛ от

БП X (n).



2. Сокращенная ДНФ и
способы ее построения



Утверждение 2.1. Пусть A′ и A′′ —
сокращенные ДНФ ФАЛ f ′ и f ′′

соответственно, а ДНФ A без поглощений
ЭК получается из формулы A′ ·A′′ в
результате раскрытия скобок и приведения
подобных. Тогда A — сокращенная ДНФ
ФАЛ f = f ′ · f ′′.

Следствие. Если ДНФ A без поглощений
ЭК получается из КНФ B ФАЛ f в
результате раскрытия скобок и приведения
подобных, то A — сокращенная ДНФ ФАЛ f .



Утверждение 2.2. ДНФ без поглощений
ЭК является сокращенной ДНФ тогда и
только тогда, когда она не имеет строгих
расширений.

Следствие. Из любой ДНФ A ФАЛ f
можно получить сокращенную ДНФ этой
ФАЛ в результате построения
последовательных строгих расширений и
приведения подобных до получения ДНФ без
поглощений ЭК, не имеющей строгих
расширений.
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α1 = {1100}

β0 = {1000}

α2 = {1001}

α6 = {0110}

α4 = {0010}

α7 = {0011}

β4 = {0111}

β5 = {1110}

β3 = {1011}

α3 = {0001}

α5 = {0100}

α0 = 0̃

N′2

N′1

N′7

N′6

N′5

N′3

N′4

A′1 = K ′1 ∨ K ′3 ∨ K ′4 ∨ K ′5, A′2 = K ′2 ∨ K ′3 ∨ K ′4 ∨ K ′5.



g{x1, x2, x3} = x1x3︸︷︷︸
K1

∨ x2x3︸︷︷︸
K2

∨ x1x2︸︷︷︸
K3

∨ x1x3︸︷︷︸
K4

∨ x2x3︸︷︷︸
K5

∨ x1x2︸︷︷︸
K6

.
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{111}

N1 N4

N6

N2

N5

N3

Ng = {{000}, {111}},
A1 = K1 ∨ K3 ∨ K5,

A2 = K2 ∨ K4 ∨ K6,

A3 = K1 ∨ K2∨,K4 ∨ K5,

A4 = K2 ∨ K3 ∨ K5 ∨ K6,

A5 = K3 ∨ K4 ∨ K6 ∨ K1.



3. Тупиковые ДНФ, ядро и
ДНФ пересечение тупиковых.

ДНФ Квайна, критерий
вхождения простых

импликант в ДНФ сумма
тупиковых, его локальность



Утверждение 3.1. Дизъюнктивная
нормальная форма ∩T ФАЛ f состоит из
тех простых импликант ФАЛ f , которые
соответствуют ядровым граням этой ФАЛ.

Следствие. Сокращенная ДНФ ФАЛ f
является ее единственной тупиковой ДНФ
тогда и только тогда, когда f — ядровая
ФАЛ, т.е. все ее максимальные грани входят
в ядро.



Утверждение 3.2. Простая импликанта
K ФАЛ f входит в ДНФ ΣT тогда и только
тогда, когда грань NK не является
регулярной гранью этой ФАЛ.



4. Особенности ДНФ
линейных и монотонных

функций. Функция покрытия,
таблица Квайна и построение

всех тупиковых ДНФ



Утверждение 4.1. Сокращенная ДНФ A
монотонной ФАЛ f , f ∈ P2(n), является
единственной тупиковой ДНФ этой ФАЛ и
имеет вид:

A(x1, . . . , xn) =
∨
β∈N+

f

K+
β (x1, . . . , xn).

При этом все наборы из N+
f являются

ядровыми точками ФАЛ f .

Следствие. Монотонная ФАЛ является
ядровой ФАЛ.



Утверждение 4.2. Функция покрытия
F (y1, . . . , yp) матрицы M , M ∈ Bp,s , без
нулевых столбцов задается КНФ вида:

F (y1, . . . , yp) =

s∧
j=1

( ∨
16i6p
M〈i ,j〉=1

yi

)
.

Следствие. В результате раскрытия
скобок и приведения подобных из этой КНФ
можно получить сокращенную ДНФ
ФАЛ F (y), простые импликанты которой
взаимно однозначно соответствуют
тупиковым покрытиям матрицы M .



5. Градиентный алгоритм и
оценка длины градиентного

покрытия, лемма о
протыкающих наборах.

Использование градиентного
алгоритма для построения

ДНФ



Утверждение 5.1 Пусть для
действительного γ, 0 < γ 6 1, в каждом
столбце матрицы M , M ∈ Bp,s , имеется не
меньше, чем γ · p, единиц. Тогда покрытие
матрицы M , получаемое с помощью
градиентного алгоритма, имеет длину не
больше, чем ⌈

1
γ

ln+(γs)

⌉
+

1
γ
,

где ln+ x =

{
ln x , если x > 1;
0, если 0 < x < 1.



Утверждение 5.2 При любых
натуральных n и m, m 6 n, в кубе Bn всегда
найдется подмножество мощности не более,
чем n · 2m, протыкающее все грани ранга m.



6. Задача минимизации ДНФ.
Поведение функций Шеннона
и оценки типичных значений

для ранга и длины ДНФ



Утверждение 6.1 Для любого n, n ∈ N,
имеют место соотношения

λ(n) = 2n−1,R(n) = n · 2n−1.

Утверждение 6.2 Для почти всех ФАЛ f ,
f ∈ P2(n), выполняются неравенства

λ(f ) 6
3
4
2n−1 (1 + O

(
n · 2−n/2

))
,

R(f ) 6
3
4
n · 2n−1 (1 + O

(
n · 2−n/2

))
.



7. Алгоритмические
трудности минимизации ДНФ

и оценки максимальных
значений некоторых

связанных с ней параметров.
Теорема Ю. И. Журавлева о
ДНФ сумма минимальных



Утверждение 7.1 Число тупиковых
(минимальных) ДНФ у ФАЛ f из
P2(n), n > 4, вида

f (x1, . . . , xn) = g(x1, x2, x3) · (x4 ⊕ · · · ⊕ xn),

где Ng = {(000), (111)}, равно 52n−4

(соответственно 22n−4
).

Следствие

τ (n) > 52n−4
, µ(n) > 22n−4

.



Утверждение 7.2

λсокр.(n) > e1
3n

n
,

где e1 — некоторая константа.

0̃

αn = 1̃

`

`

` `
` `

` `

α1 α2n−1

α2 α2n−2

αn−1 αn+1

N1 N2n−2

Nn−1 Nn

Рис.: цепная ФАЛ длины (2n− 2) в
кубе Bn



Утверждение 7.3 При любом
n ∈ N, n > 3, в P2(n) существуют ФАЛ f ′ и
f ′′, имеющие общую простую импликанту K ,
которая входит в ДНФ ΣM одной, но не
входит в ДНФ ΣM другой из этих ФАЛ и
для которой Sn−3(NK , f ′) = Sn−3(NK , f ′′).



Замечание 1 Из теоремы следует, что
критерий вхождения ЭК в ДНФ ΣM не
имеет такого локального характера, как
критерий вхождения ЭК в ДНФ ΣT .

Замечание 2 Известно, что при n > 14 в
P2(n) имеется цепная ФАЛ четной длины
t, t > 2n−11 − 4, на основе которой
справедливость теоремы можно установить
для окрестности порядка ( t2 − 2).


