
Пакеты проектирования
сверхбольших

интегральных схем

Лектор:

Подымов Владислав Васильевич

e-mail:
valdus@yandex.ru

Осень 2016

Лекция 1

Часть 1

Напоминание основ

Логические значения

I 0 — логический ноль
I 1 — логическая единица
I x — неопределённое значение

I например, в неинициализированном регистре
I z — состояние высокого импеданса

I оно нужно в основном для управления шиной, к которой
подключено много независимых устройств

I в ближайшее время это значение нам не понадобится

Логические значения

Что мы строим: схему, между узлами которой в реальном
времени передаются логические значения

Узел сетизначение

время
0

1

x

задний фронт
(negedge)

передний фронт
(posedge)

I 0 и 1 — это конкретные уровни напряжения
I x — это абстракция: уровень напряжения,

соответствующий неизвестному логическому значению

Ввод-вывод DE0-Nano
KEY[0]KEY[1]

. . . SW[0]SW[3] CLOCK_50

. . . LED[0]LED[7]

(и ещё GPIO, но они нам пока не нужны)

Ввод-вывод DE0-Nano

Как ведёт себя ввод-вывод DE0-Nano

0

1
KEY[i]

0

1
SW[i]

Ввод-вывод DE0-Nano

Как ведёт себя ввод-вывод DE0-Nano

0

1
CLOCK_50

2 · 10−8 секунд

0

1
LED[i]

Verilog: модули и шины

“Строительный блок” дизайна Verilog — модуль:

тело. . .
входы

(input)
. . .

выходы

(output)

Входы и выходы (и многое другое) могут быть объединены в
массивы (индексация с ноля; при определении задаются
смещения сначала последнего, потом первого элемента: [7:0]; в
остальном — как в C++)

Массив проводов (входов, выходов и других) — это шина:

≡
3

2

A[0]
A[1]
A[2]

C
B[0]
B[1]

A
C

B

Verilog: определение модуля

Лучше всего описывать модуль в отдельном файле с
расширением .v и названием, совпадающим с названием
модуля

mod
2 3b

a c

Файл mod.v: (первый вариант)

module mod(a , b , c) ;
input a ;
input [1 : 0] b ;
output [2 : 0] c ;

// d e s c r i p t i o n
endmodule
// EMPTY LINE !

Verilog: определение модуля

Лучше всего описывать модуль в отдельном файле с
расширением .v и названием, совпадающим с названием
модуля

mod
2 3b

a c

Файл mod.v: (второй вариант)

module mod
(input a ,

input [1 : 0] b ,
output [2 : 0] c

) ;
// d e s c r i p t i o n

endmodule
// EMPTY LINE !

Verilog: главный модуль
Среди модулей обязательно есть главный (top module): это и
есть разрабатываемая схема, которая будет заливаться в FPGA
При работе с DE0-Nano главный модуль будет выглядеть так:

top

4
2 8

CLOCK_50
KEY
SW

LED

Файл top.v:

module top
(input [1 : 0] KEY,

input [3 : 0] SW,
input CLOCK_50,
output [7 : 0] LED

) ;
// d e s c r i p t i o n

endmodule

Verilog: способы описания модуля

Обычно различают два подхода к описанию модуля:
I структурный: явно описать инстанциации (страшная

калька с английского, будем называть их экземплярами)
других модулей и связи между ними

I функциональный: без явного описания структуры задать
взаимосвязь входов и выходов

Структурное описание: Функциональное описание:
m

m1

m1

m2 ~f (x1, x2, x3)

Verilog: структурное описание
экземпляры модулей

m

m1

m1
m2

i3

i2

i1

o3

o2

o1

m1i2
i1 o m2i2

i1 o2
o1

module m(input i 1 , i2 , i3 , output o1 , o2 , o3) ;
wire w;
m1 u p l e f t (. i 1 (i 1) , . i 2 (i 2) , . o (w)) ;
m1 down l e f t (. i 1 (i 2) , . i 2 (i 3) , . o (o3)) ;
m2 r i g h t (. i 1 (w) , . i 2 (o3) , . o1 (o1) , . o2 (o2)) ;

endmodule

Все используемые имена (в том числе провода: wire)
должны быть определены перед использованием

Verilog: структурное описание
непрерывное присваивание

i o

module t r i v i a l (input i , output o) ;
ass ign o = i ;

endmodule

assign провод = выражение; :

I в любой момент времени (с некоторой задержкой при
изменении значения) на проводе должно быть значение
выражения

Verilog: выражения

Что можно использовать при написании выражений:

I логические операции
I например, a && b — логическое И

I арифметические операции
I например, a + b — это сложение двух чисел одинаковой

битности с переполнением
I побитовые операции

I например, a & b — это побитовое И двух битовых
массивов одинаковой длины

I отношения
I например, a < b возвращает логическую 1, если число,

двоичная запись которого есть a, меньше такового для b, и
логический 0 иначе

Verilog: выражения

Что можно использовать при написании выражений:

I конкатенации
I например, {a, b} — битовый массив, составленный из a и

b
I редукции

I например, &a — логическая 1, если все биты a — единицы,
и логический 0 иначе

I условия
I например, cond ? a : b работает как в C++; cond

должно иметь логическое значение, а a и b должны иметь
одинаковое число бит

I константы
I например, 0 — это логический ноль, а 5’b00110 —

пятибитная двоичная запись числа 6

(полный список операций спрашивайте у интернета)

Verilog: функциональное описание
блок always

Он выглядит так:

always @(a or posedge b or negedge c)
// s ta tement

В аргументе перечисляются места (например, провода), при из-
менении сигнала в которых должно производиться какое-то дей-
ствие
В данном случае:

I при изменении логического значения в a,
I а также когда в b возникает передний фронт,
I а также когда в c возникает задний фронт

Действие перезаписывает значения сигналов модуля
После выполнения действия получившиеся значения сохраня-
ются в проводах до следующего выполнения блока

Verilog: функциональное описание
блок always

Он выглядит так:

always @(a or posedge b or negedge c)
begin

// sequence o f s t a t emen t s
end

Действий можно задавать много, и тогда их обычным програм-
мистским образом нужно соединить в составное действие

Verilog: функциональное описание
блок always

Он выглядит так:

always @(a , posedge b , negedge c)
begin

// sequence o f s t a t emen t s
end

В какой-то момент разработчики стандарта Verilog поняли, что
“or” писать неудобно, так что разрешили вместо него ставить
запятую
Какие же действия можно писать в always-блоке?

Verilog: функциональное описание
блокирующее присваивание

always @(b , c)
begin

b = c ;
a = b ;
c = a ;

end

I Последовательно делается следующее:
I в b выставляется начальное значение из c
I в a выставляется изменённое значение из b
I в c выставляется изменённое значение из a

Блокирующее присваивание моделирует последовательное
выполнение команд: пока присваивание не выполнено,
следующие команды не выполняются
(но в конечном итоге строится схема, просто она имеет хитрую
структуру с блоками памяти)

Verilog: функциональное описание
неблокирующее присваивание

always @(b , c)
begin

b <= c ;
a <= b ;
c <= a ;

end

I Одновременно делается следующее:
I в b выставляется начальное значение из c
I в a выставляется начальное значение из b
I в c выставляется начальное значение из a

Вообще говоря, одновременности не бывает, но в реальной
схеме эти действия будут выполнены близко по времени, и
блоки памяти будут организованы так, чтобы выставлялись
именно начальные значения

Verilog: регистры переменные

При выставлении сигналов в схеме могут понадобиться
дополнительные (неявные) ячейки памяти

Чтобы компилятор имел возможность распознать такие места
и по необходимости синтезировать дополнительную память, в
Verilog вводится понятие регистра переменной (терминология
менялась в стандарте)

Всё, что появляется в присваиваниях (=, <=) слева, должно
быть обявлено как переменная:

reg a , b , c ;
always @(b , c)
begin

b = c ; a = b ; c = a ;
end

Всё остальное может быть объявлено переменной

Verilog: регистры переменные

I имя не может одновременно быть переменной и проводом
I в некоторых случаях (например, при встрече в левой части

непрерывного присваивания) имя не может быть
переменной

I все входы и выходы являются проводами по умолчанию
I все входы обязаны быть проводами
I выходы можно определять как переменные: достаточно

I дописать в начале модуля reg <имя выхода>; или
I при определении выхода написать

output reg <имя выхода>
вместо

output <имя выхода>

Verilog: функциональное описание
условные переходы

i f (cond) stmt ;
e l s e stmt ;

case (a)
3 ’ b000 : stmt ;
3 ’ b010 : stmt ;
3 ’ b011 : stmt ;
defau l t : stmt ;

endcase

Условные инструкции тоже можно писать

Как и инструкцию switch-case

Они интерпретируются обычным образом (примерно как в
C++)

Verilog: параметры
Иногда бывает нужно написать несколько невероятно похожих,
но всё же разных модулей
Например:

module r e g i s t e r 3 (input l oad , r e s e t , c l ock ,
input [2 : 0] in , output reg [2 : 0] out) ;
always @(posedge c l ock , negedge r e s e t)

i f (~ r e s e t) out <= 0 ;
e l s e i f (~ l oad) out <= i n ;

endmodule

module r e g i s t e r 5 (input l oad , r e s e t , c l ock ,
input [4 : 0] in , output reg [4 : 0] out) ;
always @(posedge c l ock , negedge r e s e t)

i f (~ r e s e t) out <= 0 ;
e l s e i f (~ l oad) out <= i n ;

endmodule

. . .

Verilog: параметры

Чтобы описать сразу всё разнообразие модулей, отличающихся
только какими-то константными значениями (например,
регистры — размером шины), достаточно описать один модуль
с соответствующими параметрами:

module r e g i s t e r
#(parameter Width = 5)
(input l oad , r e s e t , c l ock ,

input [Width−1:0] in ,
output reg [Width−1:0] out

) ;
always @(posedge c l ock , negedge r e s e t)

i f (~ r e s e t) out <= 0 ;
e l s e i f (~ l oad) out <= i n ;

endmodule

Verilog: параметры

Чтобы описать сразу всё разнообразие модулей, отличающихся
только какими-то константными значениями (например,
регистры — размером шины), достаточно описать один модуль
с соответствующими параметрами:

Или так:

module r e g i s t e r (load , r e s e t , c l ock , i n , out) ;
parameter Width = 5 ;
input l oad , r e s e t , c l o c k ;
input [Width−1:0] i n ;
output reg [Width−1:0] out ;

always @(posedge c l ock , negedge r e s e t)
i f (~ r e s e t) out <= 0 ;
e l s e i f (~ l oad) out <= i n ;

endmodule

Verilog: параметры

parameter Width = 5 ;

Параметр можно писать вместо числа почти везде в модуле
(нельзя — в константах на месте размера)
Значение параметра по умолчанию указывается при его
определении (здесь — 5)
Экземпляр параметризованного модуля может быть вызван
двумя способами:

I с явным указанием параметров (указание параметров —
такое же, как и входов-выходов)

r e g i s t e r r #(.Width (3)) (<arguments >)

I без указания параметров — тогда подставляется значение
по умолчанию

r e g i s t e r r (<arguments >)

Лекция 1

Часть 2

Управляющие автоматы

Введение: зачем нужен управляющий автомат

+

register

8

8

1

clock
reset
load

Эта схема определяет то, как преобразуются данные, то есть
операционный автомат

В зависимости от того, что подаётся на входные сигналы load,
reset, clock, данные, записанные в регистр, могут

I оставаться такими же, как и были
I увеличиваться на единицу
I сбрасываться в ноль

Введение: зачем нужен управляющий автомат

+

register

8

8

1

clock
reset
load

А как заставить регистр делать то, что мы хотим?

1. Подвести ко входам регистра имеющиеся элементы
управления (в DE0-Nano — KEY[i], SW[i], CLOCK_50) и
управлять регистром, нажимая на кнопки и щёлкая
выключателями

2. Заставить схему делать эту работу за нас
I что особенно полезно, если управляющих входов больше,

чем элементов управления, а часто без этого в принципе
не обойтись

Введение: зачем нужен управляющий автомат

+

register

8

8

1

clock
reset
load

Схема, которая выставляет за нас управляющие сигналы нуж-
ным образом в нужные моменты времени — это управляющий
автомат

Простенькая задачка

А как разработать подходящий управляющий автомат?

Те, кто выпускались бакалаврами с нашей кафедры:
вспоминаем далёкий первый курс, а заодно чуть менее далёкий
четвёртый — знания об автоматах-преобразователях с этих
курсов очень даже могут пригодиться

Начнём с такой задачки: регистр должен посчитать числа
от ноля до двух и остановиться

Можно пошагово расписать последовательность действий,
которые должен сделать регистр, чтобы эту задачку решить:

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Автоматы

Что такое автомат?

I У него есть конечное множество состояний
I Общаясь с внешней средой, он переходит из одного

состояния в другое в дискретном времени (т.е. пошагово)
I В зависимости от текущего состояния, он выдаёт нечто на

выход, то есть во внешнюю среду (автомат Мура)
I Совершая переход, он также способен выдавать нечто на

выход (автомат Мили)

out0

out1

out2

out0

out1

out2

in1/out3

in2/out4

in3/out5 in4/out6

in1/out3

in2/out4

in3/out5 in4/out6

Автоматы

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Попробуем записать этот алгоритм в автоматном виде

Откуда взять дискретное время?

Есть входной провод CLOCK_50, и можно дискретно отсчиты-
вать моменты времени по передним фронтам приходящих от
него сигналов

Автоматы

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Попробуем записать этот алгоритм в автоматном виде

Откуда взять состояния?
Четыре пункта алгоритма — это, по большому счёту, четыре со-
стояния:

I каждый пункт точно описывает, что автомат должен
послать во внешнюю среду (то есть в операционный
автомат)

I каждый пункт может быть сделан за один такт времени

Автоматы

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Попробуем записать этот алгоритм в автоматном виде

Как соединить между собой эти состояния?
По цепочке от предыдущего к следующему, не обращая внима-
ния на то, что происходит во внешней среде

Автоматы

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Попробуем записать этот алгоритм в автоматном виде

Что когда выдавать на выход?
При переходе ничего не нужно делать (в более сложных случаях
может понадобиться, но не тут)
В каждом состоянии достаточно выставить нужные сигналы на
входах load и reset регистра:

I выставляем reset = 0 — регистр сбрасывается
(немедленно)

I выставляем load = 0 — значение в регистре
увеличивается (по переднему фронту CLOCK_50)

Автоматы

1. записать в себя ноль
2. прибавить единицу
3. прибавить единицу
4. остановиться

Попробуем записать этот алгоритм в автоматном виде

Диаграмма автомата (диаграмма Мура?) автомата, описываю-
щего алгоритм:

reset load load —

Взаимодействие операционного и
управляющего автоматов

И как это всё будет выглядеть “в железе”?
Чтобы всё заработало, достаточно заиметь и верно соединить:

I операционный автомат: коробочку, в которой всё работает
однозначно, кроме сигналов load, reset, clock

I управляющий автомат:
I для нормальной работы требуется дискретное время

(clock) и инициализация (reset)
I основное назначение — в нужное время в нужном порядке

выставлять сигналы load, reset

I тактовый генератор CLOCK_50

Оп.Авт.
clock
reset
loadУпр.Авт.

clock
reset

CLOCK_50

Решение задачки
Регистр:

register

Width

Width
clock
reset
load

in

out

module r e g i s t e r
#(parameter Width = 8)
(input [Width−1:0] in ,

output reg [Width−1:0] out ,
input l oad , r e s e t , c l o c k

) ;
always @(posedge c l ock , negedge r e s e t)

i f (~ r e s e t) out <= 0 ;
e l s e i f (~ l oad) out <= i n ;

endmodule

Решение задачки

Сумматор:

adder

Width Width

Width

x y

o

module adder
#(parameter Width = 8)
(input [Width−1:0] x ,

input [Width−1:0] y ,
output [Width−1:0] o

) ;
ass ign o = x + y ;

endmodule

Решение задачки

Операционный автомат (с выводом значения регистра в LED):

counter
8clock

reset
load

x

module coun t e r (input l oad , r e s e t , c l ock ,
output [7 : 0] x) ;

parameter Width = 8 ;
wire [Width−1:0] in , out ;

r e g i s t e r r (. i n (i n) , . out (out) , . l o ad (l oad) ,
. r e s e t (r e s e t) , . c l o c k (c l o c k)) ;

adder a (. x (out) , . y (8 ’ b00000001) , . o (i n)) ;

ass ign x = out ;
endmodule

Решение задачки
Управляющий автомат:

fsmclock
reset

o_resetload

module fsm (input c l ock , r e s e t ,
output reg l oad , o_reset) ;

reg [1 : 0] c_state , n_state ;

always @(c_state)
case (c_state)
2 ’ b00 :

begin
l o ad = 1 ;
o_reset = 0 ;
n_state = 2 ’ b01 ;

end

Решение задачки
Управляющий автомат:

fsmclock
reset

o_resetload

2 ’ b01 :
begin

l o ad = 0 ;
o_reset = 1 ;
n_state = 2 ’ b10 ;

end
2 ’ b10 :

begin
l o ad = 0 ;
o_reset = 1 ;
n_state = 2 ’ b11 ;

end

Решение задачки
Управляющий автомат:

fsmclock
reset

o_resetload

2 ’ b11 :
begin

l o ad = 1 ;
o_reset = 1 ;
n_state = 2 ’ b11 ;

end
endcase

always @(posedge c l ock , negedge r e s e t)
i f (~ r e s e t) c_state <= 0 ;

e l s e c_state <= n_state ;
endmodule

Решение задачки

Главный модуль (reset выведен на KEY[1], и мы, нажимая на
KEY[0], генерируем тактовые импульсы):

module top (SW, KEY, LED , CLOCK_50) ;
input wire [3 : 0] SW;
input wire [1 : 0] KEY;
output [7 : 0] LED ;
input wire CLOCK_50 ;

wire l oad , r e s e t ;
c oun t e r op_aut (. l o ad (l oad) , . r e s e t (r e s e t) ,

. c l o c k (KEY [0]) , . x (LED)) ;
fsm c_aut (. c l o c k (KEY [0]) , . r e s e t (KEY [1]) ,

. l o ad (l oad) , . o_reset (r e s e t)) ;
endmodule

А теперь задачка посложнее
Хочу, чтобы счётчик работал так:

I выключателями SW составляю двоичную четырёхбитную
запись числа

I кнопкой KEY[1] запускаю алгоритм
I счётчик отсчитывает с ноля до составленного числа,

прибавляет единицу и останавливается
В чём здесь сложности?

1. Диаграмма Мура нелинейна (есть циклы)
2. Управляющий автомат, чтобы знать, что делать, должен

анализировать информацию из внешнего мира
3. Передавать данные в управляющий автомат — плохо

(управляющий автомат должен управлять,
а не вычислять)

4. Значит, нужно добавить в операционный автомат схему,
работающую с данными (проверяющую, досчитал ли
регистр до конца) и передающую результат работы в
управляющий автомат

Как изменится операционный автомат

Было:

+

register

8

8

1

clock
reset
load

≤
8

num

ltnum

I Добавился блок сравнения
I Добавилась входная шина num
I Добавился выходной сигнал ltnum — он будет

пересылаться управляющему автомату

Как изменится операционный автомат

Стало:

+

register

8

8

1

clock
reset
load

≤
8

num

ltnum

I Добавился блок сравнения
I Добавилась входная шина num
I Добавился выходной сигнал ltnum — он будет

пересылаться управляющему автомату

Как будет выглядеть управляющий автомат

clear load —

ltnum

—
∼ltnum

module fsm (input c l ock , r e s e t , ltnum ,
output reg l oad , o_reset) ;

. . .

Как будет выглядеть управляющий автомат

clear load —

ltnum

—
∼ltnum

. . .
2 ’ b00 :
begin

o_reset = 0 ;
l o ad = 1 ;
n_state = 2 ’ b01 ;

end
. . .

Как будет выглядеть управляющий автомат

clear load —

ltnum

—
∼ltnum

. . .
2 ’ b01 :
begin

o_reset = 1 ;
l o ad = 0 ;
n_state = 2 ’ b10 ;

end
. . .

Как будет выглядеть управляющий автомат

clear load —

ltnum

—
∼ltnum

. . .
2 ’ b10 :
begin

o_reset = 1 ;
l o ad = 1 ;
i f (ltnum) n_state = 2 ’ b01 ;
e l s e n_state = 2 ’ b11 ;

end
. . .

Как будет выглядеть управляющий автомат

clear load —

ltnum

—
∼ltnum

. . .
2 ’ b11 :
begin

o_reset = 1 ;
l o ad = 1 ;
n_state = 2 ’ b11 ;

end
. . .

Как будет выглядеть взаимодействие
управляющего и операционного автоматов

Упр.Авт.
Оп.Авт.

clock
reset
load
ltnum

num

SW4’b0000

CLOCK_50

clock
reset

8

4 4

А остальную часть решения додумайте сами

Конец лекции 1

