
Model-checking Access Control Policies

Dimitar P. Guelev Mark Ryan Pierre Yves Schobbens

July 9, 2004

Abstract

We present a model of access control which provides fine-grained data-dependent control, can express
permissions about permissions, can express delegation, and can describe systems which avoid the root-
bottleneck problem. We present a language for describing goals of agents; these goals are typically to
read or write the values of some resources. We describe a decision procedure which determines whether
a given coalition of agents has the means (possibly indirectly) to achieve its goal. We argue that this
question is decidable in the situation of the potential intruders acting in parallel with legitimate users and
taking whatever temporary opportunities the actions of thelegitimate users present. Our technique can
also be used to synthesise finite access control systems, from an appropriately formulated logical theory
describing a high-level policy.

Keywords: access control; security model; trust management; analysis; verification; logic-based design.

Introduction

In a world in which computers are ever-more interconnected,access control systemsare of increasing impor-
tance in order to guarantee that resources are accessible bytheir intended users, and not by other possibly
malicious users. Access control systems are used to regulate access to resources such as files, database
entries, printers, web pages. They may also be used in less obvious applications, such as to determine
whether incoming mail has access to its destination mailbox(spam filtering), or incoming IP packets to their
destination computers (firewalls).

We present a model of access control which has among others the following features:� Access control may be dependent on the data subject to control. This is useful in certain applications,
such as the conference paper review system described below,or stateful firewalls, databases, etc. In
[7], this is calledconditional authorisation.� Delegation of access control is easily expressed. This helps to avoid the root bottleneck, whereby
root or the owner of a resource is required in order to make access control changes, and the insecurity
caused by investing too much power in a single agent.� Permissions for coalitions to act jointly can be expressed.

A key feature of our model is thatpermissionsare functions ofstate variables, and therefore may
change with the state. Because the ability to change the state is itself controlled by permissions, one can, in
particular, expresspermissions about permissions. This allows us easily to devolve authority downwards,
thus avoiding the root bottleneck, and to express delegation.

A potential problem of sophisticated access control systems, such as those which can be described using
our model, isindirect paths. It might be that the system denies immediate access to a resource for a certain

1

agent, but it gives the agent indirect possibilities by allowing it to manipulate permissions. Hence, there
could be a sequence of steps which the agent can execute, in order to obtain access to the resource. We are
interested in verifying access control systems to check whether such indirect paths exist.

Example 1 Consider aconference paper review system. It consists of a set of papers, and a set of agents (which may
be authors, programme-committee (PC) members, etc). The following rules apply:

1. The chair appoints agents (if they agree to it) to become PCmembers. PC members can resign unilaterally.

2. The chair assigns papers for reviewing to PC members.

3. PC members may submit reviews of papers that they have beenassigned.

4. A PC membera may readb’s review of a paper, if:� the paper has not been assigned toa; or� the paper has been assigned toa, and she has already submitted her own review.

5. PC members may appoint sub-reviewers for papers which they have been assigned. Sub-reviewers may submit
reviews of those papers. The PC member can withdraw the appointment of sub-reviewers.

6. Authors should be excluded from the review process for their papers.

Each of these rules is a read access or a write access by one or more agents to a resource. We formalise this example
in the next section, and use it as a running example through the paper. Statements 3 and 4 illustrate the dependency of
write access and read access (respectively) on the current state. Statement 5 shows how permissions about permissions
are important; here, the PC member has write permission on the data expressing the sub-reviewers’ write permission
on reviews.

Model checking such an access control system will answer questions such as:can an author find out who reviewed
her paper? Can a reviewer of a paper read someone else’s review, before submitting his own?We answer the second
question in Example 10.

Example 2 In health care, access control systems govern an agent’s ability to read and change a patient’s records [2],
whether the agent is the patient, a relative, a treating doctor or nurse, etc. It is desirable for this system to be flexible
and allow delegation.� The patient may delegate readability or writability of certain data (such as her address or telephone number) to

a friend.� The treating doctor may delegate readability or writability of other data (such as treatment details) to a col-
league.� The appointment booking system may allow the patient to bookappointments, subject to some restrictions.

Possible indirect paths include: the patient temporarily changes his address in order to obtain an appointment at a
certain hospital, and then changes it back again.

The main part of this paper presents a simple language for programming access, a propositional language
for specifying access goals, and an accessibility operatorwhich denotes that a given goal is achievable by
means of a program in the programming language and can be usedto formulate access control policies. We
propose axioms which lead to the expressibility of this operator in propositional logic and to decision proce-
dures for it. These procedures allow access control policies to be checked and behaviour that violates them
to be proposed as counterexample to imperfect implementations of policies. Furthermore, the propositional
expressibility of the accessibility operator entails thatimplementations of policies formulated with it can be
automatically synthesised. We also show that it is decidable whether the execution of a certain program by
one coalition provides another coalition with temporary opportunities that are sufficient for the achievement
of a certain goal, given that the second coalition can interleave its actions with the actions of the first one.

2

A Prolog implementation of one of the possible decision procedures for our accessibility operator (together
with examples) is available on the web [8].

Structure of the paper. We first define our model of access control formally, show how Example 1
can be encoded in it and point to some properties of our model known to be important from the literature.
Then we introduce the simple programming language which expresses the procedures that coalitions of
agents can use to access systems and define a class of goals that can be pursued by coalitions of agents. For
every concrete system it is decidable whether a coalition can achieve a given goal of this class by running
a program. We argue that the techniques developed in detail for the simple programming language can
be straighforwardly extended to languages based on high-level access actions. In the concluding section
we explain how these techniques lead to algorithms for modelchecking access control policies on existing
systems and synthesising systems which implement given policies.

1 Access control systems

We denote the set of propositional formulas' built using the variablesp from some given vocabularyP byL(P). We adopt) and? as basic in the construction of these formulas and regard>, :, ^, _ and, as
abbreviations. We denote the set of the variables occurringin a formula' 2 L(P) by Var(').
Definition 3 An access control systemis a tupleS = hP;�; r; wi, whereP is a set of propositional variables
as above,� is a set ofagents, andr andw are mappings of typeP�P�n(�)! L(P), whereP�n(�) stands
for the set of the finite subsets of�. The mappingsr andw are required to satisfyA � A0 implies ` r(p;A)) r(p;A0) and ` w(p;A)) w(p;A0): (1)

The requirement (1) reflects that a coalitionA has the abilities of all of its subcoalitionsA.
The state of an access control systemS = hP;�; r; wi is determined by the truth values of the variablesp 2 P , denoted by0 and1. States are models forL(P) as a propositional logic language. We represent the

states ofS by the subsets ofP , s � P representing the state at which the variables which evaluate to1 are
those ins. We denote the truth value of formula' at states by '(s). Truth values of formulas are defined
in the usual way.

Given p 2 P , A ��n � and s � P , coalitionA has the right to read or overwritep at states iffr(p;A)(s) = 1 or w(p;A)(s) = 1, respectively. The definitions ofr andw are assumed to be known to all
agentsa 2 �. Agents, however, may lack the permission to access variables in the formulas thatr andw
produce, and therefore be unable to decide what is permittedat certain states.

Example 4 Consider the Conference paper review system again. LetPapers and Agents be fixed sets, let the
functionauthor : Papers� Agents! f?;>g
be fixed, and
 : Agents the constant
 : Agents denote the chairperson of the programme committee. LetP contain
the variablesp
member(a) a is a PC memberreviewer(p; a) paperp is assigned to PC memberasubreviewer(p; a; b) paperp is assigned to sub-reviewerb by PC memberasubmittedReview(p; a) a review ofp has been submitted by sub-reviewerareview(p; a) the review ofp from sub-reviewera
for eacha 2 Agents andp 2 Papers. Letp
member(
) hold (initially) andr andw be defined as follows:

3

p
member(:) The set of PC members is known to everyone.r(p
member(a); A)
 >.
A PC member may be appointed by a joint action of the chair and the candidate, and may resign unilaterally:w(p
member(a); A)
 fa;
g � A _ (a 2 A ^ p
member(a)).

Here and below we use definition schemata, which become well-formed formulas overP when the agents and coali-
tions occurring in them become instantiated. In particular, author(p; a) stands for a propositional constant for each
pairp 2 Papers, a 2 Agents.reviewer(:; :) Reviewers are known to the PC members, except the authors of the respective paper:r(reviewer(p; a); fxg)
 p
member(x) ^ :author(p; x)

The chairperson
 may assign a paperp to a PC membera who is not an author ofp, if a accepts. Both
 anda
may resign reviewership ofp unilaterally, unlessa has already assignedp to a sub-reviewer:w(reviewer(p; a); A)
 (p
member(a) ^ fa;
g � A ^ :author(p; a) ^ :reviewer(p; a)) _((a 2 A _
 2 A) ^ reviewer(p; a) ^ : Wb2Agents subreviewer(p; a; b)) !subreviewer(:; :; :) The review status of a paper is known to PC members who are not authors of the paper, and to
the respective sub-reviewers:r(subreviewer(p; a; b); fxg)
 (p
member(x) ^ :author(p; x)) _ x = b
A reviewera may assign a paperp to at most one sub-reviewerb, who is not an author ofp, and has not been
assignedp by another reviewer. (To reviewp personally,a must become his/her own sub-reviewer.) A reviewer
may revoke sub-reviewership, and a sub-reviewer may resign, unless a review has already been submitted:w(subreviewer(p; a; b); A)
 0B� fa; bg � A ^ reviewer(p; a) ^ :author(p; b) ^: Wd2Agents(subreviewer(p; a; d) _ subreviewer(p; d; b)) ! _(subreviewer(p; a; b) ^ (a 2 A _ b 2 A) ^ :submittedReview(p; b)) 1CAsubmittedReview(:; :) Whether a review on a paper has been submitted is known to PC members, except the authors
of the paper:r(submittedReview(p; a); fxg)
 p
member(x) ^ :author(p; x)
A subreviewer may submit a review once. (This makes the current value ofreview(p; a) final.)w(submittedReview(p; a); fxg)
 x = a ^ Wb2Agentssubreviewer(p; b; x) ^ :submittedReview(p; x)review(:; :) PC membera can read reviews of a paperp, provideda is not its author and does not have a review
outstanding forp.r(review(p; a); fxg)
 p
member(x) ^ :author(p; x) ^ submittedReview(p; a)^(Wb2Agentssubreviewer(p; b; x)) submittedReview(p; x) _ x = a) !
A sub-reviewer may update the contents of his review until he/she makes it final by settingsubmittedReview
to 1:w(review(p; a); fxg)
 x = a ^ Wb2Agentssubreviewer(p; b; x) ^ :submittedReview(p; x)

The formulasr(:; :) andw(:; :) in 2-4 which are defined about singleton coalitions extend tobigger coalitions by
monotonicity.

The purpose of this example is to illustrate our model and syntax. It becomes clear in Example 10 that the
design of the system specified above is not flawless. It admitsviolating some well-established practices of conference
management.

We extendr to a mapping fromL(P)� 2� toL(P) by puttingr(';A)
 Vp occurs in' r(p;A).
An access control systemhP;�; r; wi is finite, if P and� are finite. In this paper we study finite access

control systems. We only consider systems whose resources are sets of boolean variables; for example, the
review of a paper was represented as a boolean, which is more crude than the reviews from most conferences.

4

1.1 Comparison with other models

Several formal models of access control have been published. The influential early work [9] proposed a
model for access control with a matrix containing the current rights of each agent on each resource in the
modelled system. The actions allowed include creating and destroying agents and resources and updating
the matrix of the access rights. The possibility to carry outan action is defined in terms of the rights as
described in the matrix. Given the generality of that model,it is not surprising that the problem of whether
an agent can gain access to a resource, called thesafety problem, is not decidable. This can be largely
ascribed to the possibility to change the sets of agents and resources in the model. In our model, the sets of
agents and resources are fixed.

The formulasr(p;A) andw(p;A) may be considered as the values of the cells of an access matrix: : : CoalitionA : : :: : : : : : : : : : : :
Resourcep : : : r(p;A); w(p;A) : : :: : : : : : : : : : : :

which for each particular states of the modelled system corresponds to a matrix of the form from [9]
describing the rights of reading and writing at that state. Unlike [9], entries in the matrix are updated by
actions specifically for that purpose, whereas in our model coalitions updategeneral purposestate variables,
which in turn affect the value of the formulasr(:; :) andw(:; :). This allows the modelling ofautomatic
dependencies between the contents of the access control system, if viewed as a database, and the rights of
its users. The special case in which every particular right can be manipulated by a dedicated action can be
modelled in our system by choosing a dedicated propositional variable qx;p;A for each triplex 2 fr; wg,p 2 P andA � � and definingx(p;A) asqx;p;A. Then changing the rightx of coalitionA onp can be made
independently for each triplex; p; A. In this case, however, special care needs to be taken to avoid infinite
digressions likeqx;p;A, qy;qx;p;A;B , qz;qy;qx;p;A;B ;C , : : :

An analysis of formal models is given in [7]. Desirable properties highlighted in the literature include:� Conditional authorisations[7]. Protection requirements may need to depend on the evaluation of
conditions. As shown by the example above, this is a central feature of our model.� Expressibility of joint action[10, 1]. Some actions require to be executed jointly by a coalition of
agents, such as the appointment of an agent to the programme committee in the example above,
which requires the willingness both of the chair and the candidate.� Delegation mechanisms. In particular, permission to delegate a privilege should be independent of
the privilege [4]. Delegation mechanisms may be classified according to permanence, transitivity and
other criteria [5].� Support for open and closed systems[7]. In open systems, accesses which are not specified as for-
bidden are allowed. Thus, the default is that actions are allowed. In closed systems, the default is the
opposite: actions which are not expressly allowed are forbidden.� Expressibility of administrative policies[7]. Administrative policies specify who may add, delete, or
modify the permissions of the access control system. The are“one of the most important, although
less understood” aspects of access control, and “usually receive little consideration” [7]. In our model,
they are fully integrated, as the conference paper review example shows.� Avoidance of root bottleneck.Called ‘separation of duty’ in [7], this property refers to the principle
that no user should be given enough privilege to misuse the system on their own. Models should
facilitate the design of systems having this property.

5

� Support for fine-and coarse-grained specifications[7]. Fine-grained rules may refer to specific in-
dividuals and specific objects, and these should be supported. But allowingonly fine-grained rules
would make a model unusable; some coarse-grained mechanisms such as roles must also be supported.
Our model supports fine-grained rules. It relies on a higher-level language such as the language of
predicates used in the example above to express coarse-grained rules.

Our model satisfies all these properties, except the last one. It is not meant to be a language for users. It
represents a low-level model of access control, which we canuse to give semantics to higher-level languages
such as RBAC [12], OASIS [3], and the calculus of [1].

2 Programs in systems with access control

In this section we introduce a simple language which can be used to program access to systems as we
described above. Programs� in it have the syntax� ::= skip j p:=' j if ' then � else � j (�;�) (2)

and the usual meaning. It can be shown that adding aloop statement, e.g.while ' do � to this language
would have no effect on its ultimate expressive power. This follows from our choice to model only finite
state systems. We do not include loops in (2), because our concern is the mere existence of programs with
certain properties.

2.1 Semantics of programs

We define the semantics of programs in (2) as functions from states to states. This can be regarded as
a denotational semanticsfor (2), as known from the literature (see, e.g., [11]). The ingredient of this
semantics that is specific and most important to our study is amapping describing executability of programs
as the subject to access restrictions. The notation below isintroduced to enable the concise definition of the
semantics. LetS = hP;�; r; wi be a fixed access control system for the rest of this section.

Definition 5 Substitutions are functions of the typeP ! L(P). We record substitutionsf in the form[f(p)=p : p 2 P ℄. We often write[f(p)=p : p 2 Q℄ whereQ � P to denote�p:if p 2 Q then f(p) else p.
If Q = fp1; : : : ; png, then we sometimes denote[f(p)=p : p 2 Q℄ by [f(p1)=p1; : : : ; f(pn)=pn℄.

A substitutionf is extended to a function of typeL(P) ! L(P) by the clausesf(?) = ? andf(')) = f(')) f(). We omit the parentheses inf(') for ' 2 L(P). Given substitutionsf
and g, fg denotes[fg(p)=p : p 2 P ℄. 9p' stands for[?=p℄' _ [>=p℄'. 8p' stands for:9p:'. IfVar(') = fp1; : : : ; png, then9' and8' stand for9p1 : : : 9pn' and8p1 : : : 8pn', respectively.

LetP be the set of all programs inP . The function[[:℄℄ : P! (P ! L(P)) is defined by the clauses:[[skip℄℄ = [p=p : p 2 P ℄ = [℄[[p := '℄℄ = ['=p℄[[if ' then � else �℄℄ = [(' ^ [[�℄℄(p)) _ (:' ^ [[�℄℄(p))=p : p 2 P ℄[[(�;�)℄℄ = [[�℄℄[[�℄℄
Proposition 6 If S grants all the access� attempts, then the run of� from states � P takesS to statefp : ([[�℄℄(p))(s) = 1g.

6

Every particular step of the execution of a program can be carried out only if the respective coalition has
the necessary access rights. E.g., for an assignmentp := ' to be executed, the coalition needs the right to
overwritep and read the variables occurring in'. We define this by means of the function[[:; :℄℄ : 2��P!L(P). [[A;�℄℄ evaluates to a formula which expresses whether the coalition A may execute the program�.[[:; :℄℄ is defined by the clauses:[[A; skip℄℄ = >[[A; p := '℄℄ = r(';A) ^ w(p;A)[[A; if ' then � else �℄℄ = r(';A) ^ (') [[A;�℄℄) ^ (:') [[A; �℄℄)[[A; (�;�)℄℄ = [[A;�℄℄ ^ [[�℄℄[[A; �℄℄
Proposition 7 S will grant coalitionA � � to execute program� from states iff [[A;�℄℄(s) = 1.

Despite its ultimate simplicity, the language (2) can describe every deterministic and terminating algo-
rithm for access to a system the considered type, as long as itis assumed that a failed access attempt can
only bring general failure, and cannot be used to, e.g., drawconclusions on the state of a system for the
purpose of further action. This restriction can be lifted. See the more general setting outlined in Subsections
4.2 and 4.3.

2.2 Programs which obtain access

Let S = hP;�; r; wi be a fixed access control system again, and letP be the set of programs (2) in the
vocabularyP . Given a states � P and ap 2 P , the truth valuesr(p;A)(s) andw(p;A)(s) indicate
whetherA can read and writep, respectively,in states. However, it may be thatA currently does not have
some permission, but thatA can change the state in order to obtain it. In this section we defineRA' andWA', which denoteA’s ability to read/write� by a possibly lengthy sequence of steps. Such sequences can
be encoded as programs of the form (2). The ultimate ability for A to obtain the truth value of' 2 L(P)
can be understood as the ability ofA to run a program� 2 P that works out the value of' and copies it
into some variablep0 such thatr(p0; A) = w(p0; A) = >. It can be expressed in terms of[[�℄℄ and[[A;�℄℄
as follows:RA'
 (9� 2 P)8([[A;�℄℄ ^ ([[�℄℄(p0) , ')) (3)

Similarly, the ability ofA to drive the system into a state where some' 2 L(P) has a truth value ofA’s
choosing, can be expressed by the formulaWA'
 (9�>; �? 2 P)8([[A;�>℄℄ ^ [[A;�?℄℄ ^ [[�>℄℄' ^ [[�?℄℄:') (4)

The universal closures8 in (3) and (4) express that�, �> and�? are runnable and produce the stated
results from all initial states. Note thatRA andWA allow for destructive behaviour of the programs involved.
Obtaining the desired goal may involve changing the state, possibly in a way whichA cannot undo. In the
next section, we consider a more expressive goal language inwhich we restrict the search to programs which
are not destructive.

The formulas (3) and (4) determine the ability ofA to execute a program which would achieve the
goal of reading or writing'. Quantifier prefixes like(9� 2 P) make it hard to evaluate (3) and (4)
directly. However, ifS is finite, these formulas have purely propositional equivalents, and therefore can be
computed mechanically, because there are only finitely manydifferent programs in the vocabularyP modulo
semantical equivalence. Of course, the enumerating all these programs in order to evaluate(9� 2 P) is very
inefficient. In Section 3 we treatRA andWA as special cases of a more general accessibility operator. In
Appendix A we describe a way to evaluate this operator, and consequently,RA andWA, without resorting to
quantifier prefixes of the form(9� 2 P), which is more efficient.

7

3 A general accessibility operator

Extracting information and driving a system into a state with some desired property are only the simplest
goals of access. One goal cannot be treated without regard for others, because achieving a goal may have
destructive side effects which prevent another goal from being achieved. That is why achieving composite
goals sometimes needs to be planned with all their subgoals in mind at the same time. In this section, we
consider a language for describing more refined kinds of access. Our language allows us to express boolean
combinations of goals. Expressible goals include preserving the truth value of some formulas while reading
or setting the truth values of others. Preservation is understood as restoring the original value of the formula
in question upon the end of activities, and not necessarily keeping the value constant throughout the run of
a program.

The accessibility operator in this language is written in the formA(�;) whereA is a coalition,� is a
list of formulas inL(P) thatA wants to read, and is agoal formulawith the syntax ::= ? j > j p j ^ j _ (5)

wherep denotes an atomic goal of one of the following forms:� '0, where' 2 L(P); this is the goal of making' true.� ', where' 2 L(P); this is the goal of ”realising” that' is true.> and? stand for a trivial goal, which calls for no action, and an unachievable goal, respectively. The goal 1 _ 2 is regarded as achieved if either 1 or 2 are. The goal 1 ^ 2 is achieved if both 1 and 2 are.
Atomic goals of the form' may fail even ifA manages to obtain the truth value of', in case it turns out to
be0. On the other hand a goal of the form' _ :' can be assumed achieved without any action.

Example 8 The expressionA(hpi; (q ^ q0) _ (:q ^:q0)) denotes thatA wants to readp andpreservethe truth value
of q. If r(p;A) = q andr(q; A) = w(q; A) = >, thenA can achieve its goal by means of the programif q then p0:=p else (q:=>; p0:=p; q:=?)
wherep0 is a variable dedicated to storing the value ofp. Note that the program restores the value ofq after temporarily
setting it to1 in order to gain access top in the else clause of the conditional statement. The goal described by
the simpler expressionA(hpi;>), which does not requireq to be restored, can be achieved by the simpler program(q:=>; p0:=p).

The formula in A(�;) can express an arbitrary relationR(p1; : : : ; pn; p10; : : : ; pn0) between the
initial valuesp1; : : : ; pn and the final valuesp10; : : : ; pn0 of the variablesp1; : : : ; pn of the system as a
requirement forA to satisfy. The main difficulty in implementing the relationR in our setting is not in
computingR, but to the planning of the actions needed to access the variables.

Example 9 LetP = fp1; p2; p3g, A � �, r(p1; A) = :p2, w(p1; A) = p2, r(p2; A) = w(p2; A) = >, r(p3; A) = p1
andw(p3; A) = :p1. From any state, canA achieve a state in which the value ofp3 is inverted?Yes; for example,
this program samples the variables in order to determine what it can do, and inverts the value ofp3. A can run it from
any state.if p2 then (p1:=>;if p3 then (p1:=?; p3:=?) else (p1:=?; p3:=>))else if p1 thenif p3 then (p2:=>; p1:=?; p3:=?) else (p2:=>; p1:=?; p3:=>)else (

8

p2:=>; p1:=>;if p3 then (p1:=?; p3:=?) else (p1:=?; p3:=>))
The program (except for the formatting) was produced by our implementation [8].

In general, the goalA(�;) expresses the ability of the coalitionA to execute a program which reads
the values of formulas in�, while changing the values of formulas in order to make the relation represented
by hold. The simple goals expressed byRA' andWA' can be expressed in this language:RA', A(f'g;>); WA', A(;; '0) ^A(;;:'0):
In Appendix A we show that the possibility (forA) to achieveA(�;) can be decided mechanically and, ifA(�;) is achievable, a program which can be used (byA) to achieve it can be synthesised.

To demonstrate this, we add the superscriptsV; T;K to goal expressions.AV;T;K(�;) expresses the
existence of a program� whichA can execute to read the formulas from� and enforce the relation repre-
sented by , provided that the initial states of the system satisfiess\V = T andwithout going through any
of the states in the list of statesK. We use the superscript tripleV; T;K to express achievability ofsubgoals
which can arise after some action that brings partial knowledge of the state of the system has already been
taken. The listK is used to prevent considering moving to states which have already been explored. Now
the original formA(�;) can be viewed as the special caseA;;;;;(�;), in which nothing is assumed about
initial states. Further details are given in Appendix A.

Sometimes goals involve enabling the achievement of further goals. A natural way to formulate and
to enable reasoning about such goals is to allownested occurrencesof the accessibility operatorA in goal
formulas : ::= ? j > j p j A(�;) j ^ j _ (6)

Example 10 For the conference paper review system, the question of whether reviewera of paperp can read reviewerb’s review before submitting his own, may be written as:fa; b;
g(;; submitted(p; b) ^ :submitted(p; a)0 ^ fag(hreview(p; b)i; submitted(p; a)0)):
This formula asks:is it possible fora, b and the chair
 to reach a states in whichb has submitted his review ofp buta has not yet submitted hers, and from therea may readb’s review and then submit hers?If this formula holds, we

can synthesise a program forfa; b;
g to enablefag to achieve(hreview(p; b)i; submitted(p; a)0) from such ans.
Surprisingly, the answer is “yes”. PC member cana readb’s review, then become appointed a subreviewer by
 and
submit her own review.

If � is the empty listhi, thenAV;T;K0(�; B(�0; 0)) means thatA can reach a states in whichA’s knowledge
of s will be sufficient forB to achieve(�0; 0). In case�0 6= hi, we assume that it is possible to achieveAV;T;K0(�; B(�0; 0)) by (I)A sharing withB its knowledgeof a reacheds described by appropriateV andT upon passing the control toB and then (II)B reading the formulas from� for A. That is why we haveBV;T;fTg(�0 � �; 0)) AV;T;K0(�; B(�0; 0))
where�0�� denotes the concatenation of�0 and�. SinceK is irrelevant to the description of the knowledge
of coalitionA onS, it does not appear on the left of) above. Appendix A covers the extended syntax (6).

4 Some generalisations

Here we outline some more general forms of the model of accesscontrol described in the previous sections
and how our results about this model extend to these forms.

9

4.1 Concurrent access

Now let coalitionsA andB be running programs� and�, respectively. Let the individual steps of� and�
be interleaved. LetB have priority overA in the following sense:B can choose to execute as many steps
of � as it wishes, then allow the next step of� to be made and regain control. Let� pass control to� for
one step by executing the special commandsleep. Intuitively, this means thatB can monitor the behaviour
of A to the extent it can read the variablesA updates and take advantage of whatever access rightsA grantsB as a side effect of pursuing its own goals. Let us denote this form of parallel composition of� and� by�k�. We define[[�k�℄℄ for � and� of the form(
; skip) for the sake of technical convenience:[[�kskip℄℄ = [[�℄℄;[[�k(p := ';�)℄℄ = ['=p℄[[(�k�)℄℄;[[�k(if ' then �1 else �2;�3)℄℄ = [(' ^ [[�k(�1;�3)℄℄(p)) _ (:' ^ [[�k(�2;�3)℄℄(p))=p : p 2 P ℄;[[�k((�1;�2);�3)℄℄ = [[�k(�1; (�2;�3))℄℄;[[skipk(sleep;�)℄℄ = [[�℄℄;[[(p := ';�)k(sleep;�)℄℄ = ['=p℄[[(�k�)℄℄;[[(if ' then �1 else �2;�3)k(sleep;�)℄℄ = � (' ^ [[(�1;�3)k(sleep;�)℄℄(p))_(:' ^ [[(�2;�3)k(sleep;�)℄℄(p)) =p : p 2 P�;[[((�1;�2);�3)k(sleep;�)℄℄ = [[(�1; (�2;�3))k(sleep;�)℄℄.
The clause[[skipk(sleep;�)℄℄ = [[�℄℄ states thatsleep has no effect when the program run byA has
nothing left to do. To express this about subsequent possible occurrences ofsleep in �, we extend[[:℄℄ by
putting [[sleep℄℄ = [[skip℄℄. The executability[[A;B; �k�℄℄ of �k� by A andB can be defined like in the
case of programs run by individual coalitions. We skip the definition here.

Now letpB 2 P satisfyw(pB; B) = > andw(pB; A) = ? and assume thatB is trying to take whatever
opportunities appear whileA is executing�, in order to obtain a copy of the truth value of in pB by
executing�. It is natural to assume thatB takes the advantage of doing as many things as it wish between
every two updatesA does. That is why the actions ofA andB in the course of their executing� and�
respectively are interleaved as in�k�. We denote the set of all programs that can possibly have occurrences
of sleep byPsleep.

Using [[:k:℄℄ and [[:; :; :k:℄℄, we can describe, e.g. what it means for coalitionB to be able to read some
property' of the state of the system by means of running program� in parallel with program� being run
by coalitionA:RB(';A; �)
 (9� 2 Psleep)8([[A;B; �k�℄℄ ^ ([[�k�℄℄(p0) , ')) (7)

A fixed � implies an upper bound of the number ofsleep statements that� may need to execute in a
sequence in order to let� complete its execution. This entails that, much like in the case of a single
coalition accessing the system, there are finitely many� modulo equivalence with respect to their effect on
the system, including their interaction with the fixed interleaved�. This means that the quantifier prefix(9� 2 Psleep) in (7) can be eliminated and, therefore,RB(';A; �) can be calculated. The more efficient
approach from Appendix A can be applied to this setting too.

4.2 Access control with arbitrary atomic actions

So far our model allows only simple assignments to boolean variables as the atomic actions. This brings
the level of abstraction down and makes some natural things difficult to program. For example, consider the
systemS = hP;�; r; wi whereP = fp1; p2g andw(p1;�) = w(p2;�) = p1 ^ p2. Then� can overwrite
each ofp1 andp2 at statefp1; p2g, but can never change the values of both variables, because once one of
the values becomes0, the writing permission is lost. Hence, there is no way to permit � the transition from
statefp1; p2g to state; without also allowing� to change some of the statesfp1g andfp2g, or even to

10

leaveS in one of these states and never proceed towards;. This means that coalitions cannot be forced to
maintain integrity constraints, like, e.g.,p1(s) = p2(s) for all s � 2P , keep logs, or be saved from painting
themselves into a corner. This restriction can be removed byintroducing high-level atomic actions instead
of the single variable assignments. In this section we arguethat the technique developed for assignments as
the atomic transformations on system state generalise to arbitrary atomic actions.

Let our programming language have the atomic statementsa1, : : : , ak, each denoting some transforma-
tion on the state. Let[[ai℄℄ and[[A; ai℄℄ denote the substitution which represents the transformation performed
by ai in the sense of Proposition 6, and the rights required forA to executeai in the sense of Proposition
7, respectively.[[ai℄℄ and [[A; ai℄℄ were defined in terms ofr andw for the case ofai being assignments in
Section 2. Now we assume that these aregivensubstitutions and formulas fora1, : : : , ak. Let us replacew by the mappings[[:; ai℄℄ : 2� ! L(P), i = 1; : : : ; k, in systems which control access by atomic actionsa1, : : : , ak. Let us retainr, which determines reading permissions. We obtain access control systems of the
form hP;�; r; �A:[[A; a1℄℄; : : : ; �A:[[A; ak℄℄i:
Since for every subsitution[[ai℄℄ there is an�i of the form (2) such that[[ai℄℄ = [[�i℄℄, we can reproduce the
results from Sections 2-3 and Appendix A about such systems.This possibility shows that, despite its
restrictions, the language (2) and the techniques for it from Sections 2.2-3 have a fundamental role in the
assembly of the respective machinery for the analysis of finite access control described in terms of high-level
actions.

4.3 General knowledge states

So far we have allowed only pairs of the formV; T to represent the knowledge states of coalitions. A
knowledge state can be viewed as a nonempty set of system states. PairsV; T can represent only some such
sets. In general, any set of system states described by a satisfiable formula fromL(P) can be viewed as a
knowledge state. This leads to a natural generalisation ofAV;T;K(: : :) to the formA�;K0(: : :) whereK 0 is
a sequence of formulas�1; : : : ; �k from L(P) such that̀ �i+1) �i and 6` �i) �i+1, i < k, and�k is�.

General knowledge states can be used to deal with the assumption that a failed access attempt ony
causes the attempting coalitionA to learn that the (generally arbitrary) formulax(p;A) does not hold,
wherex 2 fr; wg denotes the attempted action andp is the accessed variable.

Conclusions

We conclude by listing some problems whose solutions can be derived from the techniques developed in
this paper.

Model checking (Synthesis of attacks).Given a concrete access control system of the formhP;�; r; wi
the recursive equation (16) forA(�;) from Appendix A provides an algorithm to calculate the ability of a
coalitionA to achieve a general goal combining reading and writing variables, and, if there is such ability, to
synthesise a program forA to achieve the goal. Hence it can be checked whether the system permits various
forms of legitimate access, leak of data or attacks which canbe written as goals of the form(�;). In
Subsection 4.1 we show that the same problem is decidable in the situation of the potential intruders acting
in parallel with legitimate users and taking whatever temporary opportunities the actions of legitimate users
present.

Synthesis of access control systems.Given a set of propositional variablesP , a set of agents� and an
access control policy formulated as a logical theory aboutA(:; :) for A � � on systems which have their

11

state described in terms of the variables fromP , it can be decided whether an access control system of the
form hP;�; r; wi which implements this policy exists and, if so, definitions for its remaining componentsr
andw can be proposed. This can be done by developing the equation (16) into full propositional definitions
of the instances ofA(:; :) involved in the formulation of the policy and establishing the satisfiability of the
policy with respect to the applications ofr andw at the respective states of the system treated as propositional
variables. If the policy turns out to define a satisfiable restriction onr andw, any particular pair of mappingsr andw which satisfies this restriction can be chosen to complete the access control system in a way which
implements the given policy.

In Section 4 we argued that the results from Sections 2-3 can be reproduced for systems of a general
form where access is based on an arbitrary set of high-level actions. A representation of the respective access
operatorA(:; :) like that in Appendix A for the basic case can be assembled from the components used in
this basic case. We proposed a way to reason about goals whichinvolve enabling some further goals to be
achieved. We also showed how to generalise the form of knowledge states of coalitions used in Sections
2-3 and thus allow to describe that coalitions know arbitrary constraints on the states of systems and that
coalitions can learn from failures.

The algorithms which follow from Appendix A are not optimal.Results on the complexity of the prob-
lems on the class of all access control systems of the considered form might be practically unrepresentative,
because instances of extreme complexity usually have little in common with typical real cases. That is why
it would be interesting to describe subclasses which exhibit the kinds of regularity typical for real access
control systems first.

References

[1] Martı́n Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for access control in dis-
tributed systems.ACM Transactions on Programming Languages and Systems, 15(4):706–734, September 1993.

[2] R. J. Anderson.Security in Clinical Information Systems. British Medical Association, 1996.www.cl.cam.
ac.uk/users/rja14/policy11/policy11.html .

[3] Jean Bacon, Ken Moody, and Walt Yao. Access control and trust in the use of widely distributed services.Lecture
Notes in Computer Science, 2218:295+, 2001. Also:Software Practice and Experience33, 2003.

[4] O. Bandmann, M. Dam, and B. Firozabadi. Constrained delegations. InProc. IEEE Symposium on Security and
Privacy, pages 131–142, 2002.

[5] E. S. Barka.Framework for Role-Based Delagation Models. PhD thesis, George Mason University, 2002.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 1999.

[7] Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Access control: principles and
solutions.Software Practice and Experience, 33:397–421, 2003.

[8] D. P. Guelev. Prolog code supporting “Model-checking access control policies”.http://www.cs.bham.
ac.uk/˜dpg/mcacp/ , November 2003.

[9] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. On protection in operating systems. InProceed-
ings of the fifth symposium on Operating systems principles, pages 14–24. ACM Press, 1975.

[10] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authentication in distributed systems:
Theory and practice.ACM Transactions on Computer Systems, 10(4):265–310, 1992.

[11] H. Riis Nielson and F. Nielson.Semantics with Applications: A Formal Introduction. Wiley, 1992. See
http://www.imm.dtu.dk/ �riis for information about how to download a copy of the book and sup-
plementary course material.

[12] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

12

A Calculating AV;T;K(�;)
In this appendix we axiomatise the operatorAV;T;K(�;). The axioms we present can be used as re-
duction rules to decide whetherAV;T;K(�;) holds, that is, whether, given an access control systemS = hP;�; r; wi, and assuming thatA � � knows that the current states of S satisfiess \ V = T , A
can obtain the truth values of the formulas from� at s and reach a state which is related tos in the way
described by . Furthermore,A is supposed to be able to achieve its goal without (repeating) visits to states
which match partial state descriptions from the listK. We assume thatK is a set of subsets ofP and, as
long as the variables whose valuesA knows are all inV , X 2 K means thatA should avoid statess such
thats \ V = X. K becomes obsolete whenA learns the values of more variables.

In the rest of this appendix we assume thatVar(')\V = ; for ' from� and for' such that' occurs in , because it is always possible to simplify away the dependencies of goals on known variables. We denote
the elements of� by'1; : : : ; 'l.

The ability ofA to achieve a goal(�;) is equivalent to the existence of a program� of the form (2)
for the actions ofA, whichA can execute without fail from states satisfyings\ V = T and achieve(�;).

The lemma below shows that, as far as program behaviour is concerned, we only need to consider
programs of a special form:

Lemma 11 Every program� of the form (2) is equivalent to one with the syntax� ::= skip j if p then � else � j (p:=?;�) j (p:=>;�) (8)

Proof: An assignmentp:=' can be replaced byif ' then p := > else p := ? to avoid formulas other
than> and? on the right of:=. Furthermore, testing compound formulas in conditional statements can be
replaced by sequences of testings of the variables which occur in these formulas. Finally, using the associa-
tivity of (:; :) and the equivalence between(if ' then �1 else �2;�) andif ' then (�1;�) else (�2;�),
all sequential compositions can be made start with an assignment.a

Let the tripleV; T;K describe the knowledges\V = T ofA andA’s having visited the states described
in the listK. Programs� of the form (8) whichA can use to achieve a goal(�;) can either start with a
conditional statement which samples a variable, or with an assignment to a variable.

Sampling variablep 2 P could be worthwhile forA only if p 62 V andA can be confident that it is
possible iff8�V;Tr(p;A) is true, where�V;T
 [?=p : p 2 V n T ℄[>=p : p 2 T ℄:
Samplingp increases the knowledgeV; T of A to V [fpg; T 0, whereT 0 is eitherT , orT [fpg, depending
on the sampled value. After a sampling stepA can forget the listK of partial descriptions of the states
to avoid, because now it has track of one more variable which these partial descriptions do not cover. The
increased knowledge ofA can be used to simplify its goal(�;). � can be replaced either by[?=p℄�,
which ish[?=p℄'1; : : : ; [?=p℄'li
or by [>=p℄�, which is defined similarly, depending on the sampled value of p. The goal formula can be
simplified to either�p;? or �p;> , where�p;�
 [[�=p℄'=' : ' 2 L(P)℄ for � 2 f?;>g
for the same reasons. Hence we have the axiom:_p62V � AV [fpg;T[fpg;fT[fpgg([>=p℄�; �p;>)^AV [fpg;T;fTg([?=p℄�; �p;?) ^ 8�V;Tr(p;A) �) AV;T;K(�;) (9)

13

Assigning a variablep can be worthwhile forA either if p 62 V , or if p 2 V , the assignment really
changes the state ofS and does not takeS to a states such thatV \ s 2 K (this would indicate thatA
has been awarely in that state ofS before). Again,A can be confident that the assignment is possible iff8�V;Tw(p;A) is true.

Assignment top 62 V increases the knowledge ofA of the current state ofS by the variablep. It is safe
with respect to the goal(�;) only if the formulas from� do not depend onp for their truth values, because
overwriting a variable whose value has not been sampled in advance can destroy information on the initial
values of these formulas.A must observe similar safety with respect to the atomic goalsof the form' from . Let us use the formulaG
 l̂i=1([?=p℄'i , [>=p℄'i)
to express that the truth values of the formulas'1; : : : ; 'l from � do not depend onp, whose so far un-
changed value can be lost upon the assignment. Then we have the following axioms about assigning vari-
ablesp 62 V :_p62V AV [fpg;T[fpg;fT[fpgg(�; G^[[?=p℄' ^ [>=p℄'=' : ' 2 L(P)℄)^8�V;Tw(p;A)) AV;T;K(�;)(10)_p62V AV [fpg;T;fTg(�; G^ [[?=p℄' ^ [>=p℄'=' : ' 2 L(P)℄)^8�V;Tw(p;A)) AV;T;K(�;)(11)

Assignment top 2 V changes the knowledge ofA of the current state, because the known value ofp is
changed. Since we assume that variables with known values donot occur in�, nor in atomic goals of the
form ' in , we have the following axioms about such assignments:_p2V AV;Tnfpg;K[fTnfpgg(�;) ^ 8�V;Tw(p;A)) AV;T;K(�;); for T n fpg 62 K (12)_p2V AV;T[fpg;K[fT[fpgg(�;) ^ 8�V;Tw(p;A)) AV;T;K(�;); for T [fpg 62 K (13)

Finally,Amight be able to recognise that its goal(�;) has been achieved. The following axiom states that
if ' or its negation is a tautology, then reading its value can be regarded as achieved:(8'i _ 8:'i) ^AV;T;K(h'1; : : : ; 'i�1; 'i+1; : : : ; 'li;)) AV;T;K(h'1; : : : ; 'li;) (14)

Successive simplifications of the formulas from� which are obtained upon sampling variablesp and apply-
ing the substitutions[>=p℄ and[?=p℄ occurring in the corresponding axiom 9 should leadA to goals where� consists of such tautological formulas, ifA can achieve its original goal at all. To realise whether the
current state ofS is related to its initial state as prescribed by , A should be able to evaluate the formula['='0; '=' : ' 2 L(P)℄ :
Note that this formula is inL(P), while has the syntax (5). If applying�V;T to this formula produces a
tautology, thenA can conclude that has been achieved. Again, successive simplifications of thesubgoals
of the form' in are relied on to enableA to reach a state ofS where this holds. We have the axiom:8�V;T ['='0; '=' : ' 2 L(P)℄) AV;T;K(hi;) (15)

14

Note that in each of the axioms above the goal expressions on the left of the main) are simpler than those
on the right of the main). This becomes clear if we define an ordering< on the superscripts of goal
expressions by puttinghV;Ki < hV 0;K 0i iff either V � V 0 or V = V 0 andK � K 0 and notice that
superscripts occurring on the left of) in our axioms are smaller than superscripts occurring on theright.
Furthermore, each of the possible cases for appearing in thesyntax (8) of programs� has a corresponding
axiom which describes the conditions in which an� of the respective form can make its next step and the
way this step affects the goal: axioms (14) and (15) describethe cases whenA can achieve its goal by doing
nothing (skip); axiom (9) covers the case when a program with a conditionalmain statement can do, and
axioms (10), (11), (12) and (13) are about programs startingwith the four possible forms of assignment,
depending on the value assigned, and whether the variable assigned has been read in advance. That is why,
if A denotes the conjunction of the formulas on the left of) in (9)-(15), thenAV;T;K(h'1; : : : ; 'li;) , A (16)

definesAV;T;K(h'1; : : : ; 'li;) by induction onV , K and the lengthl of the list of formulas to read.
The axioms (9)-(15) can used to write the Horn clauses of a logic program to obtain a truth value forAV;T;K(�;) and, if this expression turns out to be true, to synthesize the respective�. Indeed, we have
done this [8].

The axioms above, except (15) apply without change to the case which includes subgoals of the formB(�0; 0) (whereB � � need not be the same asA.) To include such subgoals, we use that every formula of the syntax (6) with such subgoals has an equivalent in disjunctive normal form of the form 1 _ 2
where all the elementary conjunctions in 1 and none of the elementary conjunctions 2 have occurrences
of subgoals of the formB(�0; 0). ThenA can achieve(�;) if eitherA achieves(�; 2), which means
thatA should read all the formulas from� itself, or if A achieves(hi; 1) which includes enabling some
other coalitions mentioned in the subgoals of 1 of the formB(�0; 0) to continue and achieve(�0 ��; 0)
this way finishing the job ofA. Let � denote the substitution�V;T ['='0; '=' : ' 2 L(P)℄ for the sake of
brevity. Then we have the following axiom:0� 8[BV;T;fTg(�0 � �; 0)=B(�0; 0) : B � �;�0 2 (L(P))�; 2 G(P)℄� 1_8� 2 ^� lVi=18'i _ 8:'i� 1A) AV;T;K(hi; 1_ 2)(17)

whereG(P) denotes the set of the goal formulas with the syntax (6) basedon the vocabularyP . This axiom
subsumes axioms (15) and (14).

Alternatively, axioms (9)-(15) can be used to calculateAV;T;fTg(h'1; : : : ; 'li;) by model-checking a
formula in the propositional�-calculus (see e.g. [6]). Assume there are no subgoals of theformB(�0; 0) in for the sake of simplicity. Consider a system, whose state space is the set of quadruplesV0; T0; V; T such
thatT0 � V0 � V � P andT � V , whereP is the vocabulary of a fixed access control system as above. A
quadrupleV0; T0; V; T represents a state of knowledge ofA which consists of the factV0 \ s0 = T0 about
the initial states0 of S and the factV \ s = T about the current states of S. The meaning ofV; T is like in
(9)-(15). Hence the quadrupleV0; T0; V; T representsA’s knowledge of both the initial and the current state.
(The additionV0; T0 is not needed in these axioms, because they prescribe to simplify ' in subgoals of the
form ' and in formulas to read from� immediately each time the value of a variable becomes known.)

Consider the�-calculus language with the modalitieshsample pi, hp:=?i andhp:=>i for eachp 2 P .
Let the corresponding accessibility relationsRsample p,Rp:=? andRp:=> be defined by the clausesRsample p(V0; T0; V; T ;V 00 ; T 00; V 0; T 0)$ 0� 8�V;Tr(p;A) ^ p 62 V ^ V 00 = V0 [fpg ^ V 0 = V [fpg^� T 00 = T0 n fpg ^ T 0 = T n fpg_T 00 = T0 [fpg ^ T 0 = T [fpg � 1A

15

Rp:=?(V0; T0; V; T ;V 00 ; T 00; V 0; T 0)$ 8�V;Tw(p;A) ^ V 00 = V0 ^ T 00 = T0 ^ V 0 = V [fpg ^ T 0 = T n fpgRp:=>(V0; T0; V; T ;V 00 ; T 00; V 0; T 0)$ 8�V;Tw(p;A) ^ V 00 = V0 ^ T 00 = T0 ^ V 0 = V [fpg ^ T 0 = T [fpg
Each of these accessibility relations represents an actionon behalf ofA in which A either increases its
knowledge or both increases its knowledge and changes the current state. The knowledge ofA is sufficient
to establish that its goal is already achieved iff the formula8[�V0;T0'='; �V;T'='0 : ' 2 L(P)℄ ^ l̂i=1 (8�V0;T0'i _ 8�V0;T0:'i)
is valid. Let the set of states from whichA can reach a satisfactory state be[[X℄℄. Then the following
implications hold:hp:=?iX) X; hp:=>iX) X; hsample pi> ^ [sample p℄X) X; p 2 P (18)

The [�℄ in the last formula means thatA should be prepared for any outcome of the sampling. The least
solution of the system of inclusions (18) is the set of the knowledge states in whichA can make a plan to
reach a satisfactory state without fail. HenceAV;T;fTg(h'1; : : : ; 'li;) is equivalent to the satisfaction of�X:0B� �8[�V0;T0'='; �V;T'='0 : ' 2 L(P)℄ ^ lVi=1 (8�V0;T0'i _ 8�V0;T0:'i)�_Wp2P ((hsample pi> ^ [sample p℄X) _ hp:=?iX _ hp:=>iX) 1CA
at state;; ;; V; T .

16

