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Abstract

We present a model of access control which provides finergthilata-dependent control, can express
permissions about permissions, can express delegatidrgaandescribe systems which avoid the root-
bottleneck problem. We present a language for describirdsgaf agents; these goals are typically to
read or write the values of some resources. We describe sidegrocedure which determines whether
a given coalition of agents has the means (possibly indyfet achieve its goal. We argue that this
guestion is decidable in the situation of the potentialidérs acting in parallel with legitimate users and
taking whatever temporary opportunities the actions ofi¢igitimate users present. Our technique can
also be used to synthesise finite access control systemsain@ppropriately formulated logical theory
describing a high-level policy.

Keywords: access control; security model; trust managé&naealysis; verification; logic-based design.

Introduction

In a world in which computers are ever-more interconnecaedess control systerage of increasing impor-
tance in order to guarantee that resources are accessilbieioyntended users, and not by other possibly
malicious users. Access control systems are used to regatatess to resources such as files, database
entries, printers, web pages. They may also be used in legsusbapplications, such as to determine
whether incoming mail has access to its destination mai{bpam filtering), or incoming IP packets to their
destination computers (firewalls).

We present a model of access control which has among otheefeltbwing features:

e Access control may be dependent on the data subject to tofiis is useful in certain applications,
such as the conference paper review system described bmietgteful firewalls, databases, etc. In
[7], this is calledconditional authorisation

¢ Delegation of access control is easily expressed. Thisshtel@void the root bottleneck, whereby
root or the owner of a resource is required in order to makesscontrol changes, and the insecurity
caused by investing too much power in a single agent.

e Permissions for coalitions to act jointly can be expressed.

A key feature of our model is thagtermissionsare functions ofstate variables and therefore may
change with the state. Because the ability to change theistéself controlled by permissions, one can, in
particular, exprespermissions about permission$his allows us easily to devolve authority downwards,
thus avoiding the root bottleneck, and to express delegatio

A potential problem of sophisticated access control systesuch as those which can be described using
our model, isndirect paths It might be that the system denies immediate access to arsesfor a certain



agent, but it gives the agent indirect possibilities bywlig it to manipulate permissions. Hence, there
could be a sequence of steps which the agent can executeleintorobtain access to the resource. We are
interested in verifying access control systems to checkhéresuch indirect paths exist.

Example 1 Consider a&conference paper review systelhconsists of a set of papers, and a set of agents (which may
be authors, programme-committee (PC) members, etc). Thavfog rules apply:

1. The chair appoints agents (if they agree to it) to becomené@bers. PC members can resign unilaterally.
2. The chair assigns papers for reviewing to PC members.

3. PC members may submit reviews of papers that they havedss@med.
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. A PC memben may readh’s review of a paper, if:

¢ the paper has not been assigned;tor
e the paper has been assignedtand she has already submitted her own review.

5. PC members may appoint sub-reviewers for papers whighttlige been assigned. Sub-reviewers may submit
reviews of those papers. The PC member can withdraw the ajppeit of sub-reviewers.

6. Authors should be excluded from the review process far thapers.

Each of these rules is a read access or a write access by orm@lagents to a resource. We formalise this example
in the next section, and use it as a running example througpdper. Statements 3 and 4 illustrate the dependency of
write access and read access (respectively) on the cutadat Statement 5 shows how permissions about permissions
are important; here, the PC member has write permission@daka expressing the sub-reviewers’ write permission
on reviews.

Model checking such an access control system will answestapres such ascan an author find out who reviewed
her paper? Can a reviewer of a paper read someone else’'swebiefore submitting his own®/e answer the second
guestion in Example 10.

Example 2 In health care, access control systems govern an agenity édbread and change a patient’s records [2],
whether the agent is the patient, a relative, a treatingadtartnurse, etc. It is desirable for this system to be flexible
and allow delegation.

e The patient may delegate readability or writability of @éntdata (such as her address or telephone number) to
a friend.

e The treating doctor may delegate readability or writapibf other data (such as treatment details) to a col-
league.

e The appointment booking system may allow the patient to lag@ointments, subject to some restrictions.

Possible indirect paths include: the patient temporalfiigrges his address in order to obtain an appointment at a
certain hospital, and then changes it back again.

The main part of this paper presents a simple language fgranoming access, a propositional language
for specifying access goals, and an accessibility operatich denotes that a given goal is achievable by
means of a program in the programming language and can baaugsthulate access control policies. We
propose axioms which lead to the expressibility of this apmrin propositional logic and to decision proce-
dures for it. These procedures allow access control pslitiebe checked and behaviour that violates them
to be proposed as counterexample to imperfect implementof policies. Furthermore, the propositional
expressibility of the accessibility operator entails timaplementations of policies formulated with it can be
automatically synthesised. We also show that it is decedalblether the execution of a certain program by
one coalition provides another coalition with temporaryoxtunities that are sufficient for the achievement
of a certain goal, given that the second coalition can ietem its actions with the actions of the first one.



A Prolog implementation of one of the possible decision pdaces for our accessibility operator (together
with examples) is available on the web [8].

Structure of the paper. We first define our model of access control formally, show howargple 1
can be encoded in it and point to some properties of our maatelvk to be important from the literature.
Then we introduce the simple programming language whichresges the procedures that coalitions of
agents can use to access systems and define a class of gbaémtba pursued by coalitions of agents. For
every concrete system it is decidable whether a coalitionacdnieve a given goal of this class by running
a program. We argue that the techniques developed in detaithé simple programming language can
be straighforwardly extended to languages based on higi-&E£cess actions. In the concluding section
we explain how these techniques lead to algorithms for mokdetking access control policies on existing
systems and synthesising systems which implement givecigml

1 Access control systems

We denote the set of propositional formulasbuilt using the variableg from some given vocabular¥ by
L(P). We adopt= and L as basic in the construction of these formulas and regard, A, V and< as
abbreviations. We denote the set of the variables occumiagormulay € L(P) by Var(y).

Definition 3 An access control systeima tupleS = (P, ¥, r, w), whereP is a set of propositional variables
as abovey. is a set olgents andr andw are mappings of typ® x Py, (X) — L(P), wherePp, () stands
for the set of the finite subsets Bf The mappings andw are required to satisfy

A c A'implies F r(p, A) = r(p,A") and F w(p, A) = w(p, A"). Q)

The requirement (1) reflects that a coalitidrhas the abilities of all of its subcoalitions.

The state of an access control systére (P, ¥, r, w) is determined by the truth values of the variables
p € P, denoted by and1. States are models f@r(P) as a propositional logic language. We represent the
states ofS by the subsets aP, s C P representing the state at which the variables which evalicet are
those ins. We denote the truth value of formujaat states by ¢(s). Truth values of formulas are defined
in the usual way.

Givenp € P, A Cg, Y ands C P, coalition A has the right to read or overwrite at states iff
r(p,A)(s) = 1 oru(p,A)(s) = 1, respectively. The definitions afandw are assumed to be known to all
agentsa € Y. Agents, however, may lack the permission to access vasahlthe formulas that andw
produce, and therefore be unable to decide what is perndttedrtain states.

Example 4 Consider the Conference paper review system again. Phpérs and Agents be fixed sets, let the
function

author : Papers X Agents — {L, T}

be fixed, and: : Agents the constant : Agents denote the chairperson of the programme committee ALebntain
the variables

pcmember(a) a is a PC member

reviewer(p, a) paperp is assigned to PC member
subreviewer(p,a,b) paperp is assigned to sub-reviewkby PC membet
submittedReview(p,a) areview ofp has been submitted by sub-reviewer
revieu(p, a) the review ofp from sub-reviewen

for eacha € Agents andp € Papers. Letpcmember(c) hold (initially) andr andw be defined as follows:



pcmember(.) The set of PC members is known to everyone.
r(pcmember(a), A) = T.

A PC member may be appointed by a joint action of the chair had¢andidate, and may resign unilaterally:
w(pcmember(a), A) = {a,c} C AV (a € A A pcmember(a)).
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Here and below we use definition schemata, which becomefaraiied formulas oveP when the agents and coali-
tions occurring in them become instantiated. In particulathor(p, a) stands for a propositional constant for each
pairp € Papers, a € Agents.

reviewer(.,.) Reviewers are known to the PC members, except the authdne of$pective paper:
r(reviewer(p,a), {z}) = pcmember(z) A —author(p, z)
The chairperson may assign a paperto a PC membet who is not an author af, if a accepts. Botla anda
may resign reviewership af unilaterally, unlesg has already assignedo a sub-reviewer:
(pcmember(a) A {a,c} C A A —author(p,a) A —reviewer(p,a)) V >

w(reviewer(p,a), A) = ( ((a € AV ce A) Areviewer(p,a) A= \/ subreviewer(p,a,b))
bEAgents

subreviewer(.,.,.) The review status of a paper is known to PC members who areutiod®s of the paper, and to
the respective sub-reviewers:
r(subreviewer(p,a,b),{z}) = (pcmember(z) A mauthor(p,z)) Vz =b
A reviewera may assign a paperto at most one sub-reviewéywho is not an author gf, and has not been
assigneag by another reviewer. (To reviewpersonallya must become his/her own sub-reviewer.) A reviewer
may revoke sub-reviewership, and a sub-reviewer may resigless a review has already been submitted:

( {a,b} C A Areviewer(p,a) A —author(p, b) A )

- v

\/ (subreviewer(p,a,d)V subreviewer(p,d,b))
dEAgents

(subreviewer(p,a,b) A (a € AV b€ A) A ~submittedReview(p,bh))

w(subreviewer(p,a,b), A) =

submittedReview(.,.) Whetherareview on a paper has been submitted is known to Ptbers, except the authors
of the paper:
r(submittedReview(p,a), {z}) = pcmember(z) A —author(p, z)
A subreviewer may submit a review once. (This makes the otir@ue ofreview(p, a) final.)

w(submittedReview(p,a),{z}) =z =aA \/ subreviewer(p,b,z) A —submittedRevieu(p,z)
bEAgents

review(.,.) PC member can read reviews of a papgr provideda is not its author and does not have a review
outstanding fop.
pcmember(z) A —author(p, z) A submittedReview(p,a)A >

r(review(p,a), {z}) = < ( 'V subreviewer(p,b,x) = submittedRevieu(p,z)V z = a)
bEAgents

A sub-reviewer may update the contents of his review untsine makes it final by settinghbmittedReview
tol:

w(review(p,a),{z}) =z =aA \/ subreviewer(p,b,z) A ~submittedReview(p, x)
bEAgents

The formulasr(.,.) andw(.,.) in 2-4 which are defined about singleton coalitions extendigmer coalitions by
monotonicity.

The purpose of this example is to illustrate our model andayn It becomes clear in Example 10 that the
design of the system specified above is not flawless. It adsoigting some well-established practices of conference
management.

We extendr to a mapping frondL(P) x 2% to L(P) by puttingr(p, A) = A z(p, A).
p occurs ing
An access control systefP, ¥, r, w) is finite, if P andX are finite. In this paper we study finite access

control systems. We only consider systems whose resoureesets of boolean variables; for example, the
review of a paper was represented as a boolean, which is mate than the reviews from most conferences.



1.1 Comparison with other models

Several formal models of access control have been publisfiéé influential early work [9] proposed a
model for access control with a matrix containing the curmgghts of each agent on each resource in the
modelled system. The actions allowed include creating astrolying agents and resources and updating
the matrix of the access rights. The possibility to carry aataction is defined in terms of the rights as
described in the matrix. Given the generality of that modes not surprising that the problem of whether
an agent can gain access to a resource, callegafety problemis not decidable. This can be largely
ascribed to the possibility to change the sets of agentsesulirces in the model. In our model, the sets of

agents and resources are fixed.
The formulasr(p, A) andw(p, A) may be considered as the values of the cells of an accesxmatri

Coalition A

Resource | ... | r(p, A), w(p, A)

which for each particular state of the modelled system corresponds to a matrix of the forrmf{@]
describing the rights of reading and writing at that statenliké [9], entries in the matrix are updated by
actions specifically for that purpose, whereas in our modalittons updatgeneral purposstate variables,
which in turn affect the value of the formulasg.,.) andw(.,.). This allows the modelling oAutomatic
dependencies between the contents of the access conti@insysviewed as a database, and the rights of
its users. The special case in which every particular rigintlze manipulated by a dedicated action can be
modelled in our system by choosing a dedicated propositieasgable ¢, , 4 for each triplex € {r,w},
p € PandA C ¥ and definingz(p, A) asgx 4. Then changing the right of coalition A onp can be made
independently for each triple, p, A. In this case, however, special care needs to be taken td enfoiite
digressions likey p, A, 4y.¢, , 4.5 U200, ) 5:Cr

An analysis of formal models is given in [7]. Desirable prafes highlighted in the literature include:

¢ Conditional authorisationg7]. Protection requirements may need to depend on the a&tiatu of
conditions. As shown by the example above, this is a cergedlfe of our model.

e Expressibility of joint actior]10, 1]. Some actions require to be executed jointly by aitoal of
agents, such as the appointment of an agent to the prograrommittee in the example above,
which requires the willingness both of the chair and the watd.

¢ Delegation mechanismdn particular, permission to delegate a privilege showdiridependent of
the privilege [4]. Delegation mechanisms may be classif@w@ing to permanence, transitivity and
other criteria [5].

e Support for open and closed systeffis In open systems, accesses which are not specified as for-
bidden are allowed. Thus, the default is that actions acsvaldl. In closed systems, the default is the
opposite: actions which are not expressly allowed are daidn.

e Expressibility of administrative policig3]. Administrative policies specify who may add, delete, o
modify the permissions of the access control system. Thécare of the most important, although
less understood” aspects of access control, and “usualyue little consideration” [7]. In our model,
they are fully integrated, as the conference paper revieamgke shows.

¢ Avoidance of root bottleneclCalled ‘separation of duty’ in [7], this property refers teetprinciple
that no user should be given enough privilege to misuse tesyon their own. Models should
facilitate the design of systems having this property.
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e Support for fine-and coarse-grained specificatigis Fine-grained rules may refer to specific in-
dividuals and specific objects, and these should be sumgpoBat allowingonly fine-grained rules
would make a model unusable; some coarse-grained mectasigrh as roles must also be supported.
Our model supports fine-grained rules. It relies on a hidéest language such as the language of
predicates used in the example above to express coarsegnailes.

Our model satisfies all these properties, except the last king not meant to be a language for users. It
represents a low-level model of access control, which weusarto give semantics to higher-level languages
such as RBAC [12], OASIS [3], and the calculus of [1].

2 Programs in systems with access control

In this section we introduce a simple language which can leel is program access to systems as we
described above. Programsdn it have the syntax

« = skip | p:=p | if ¢ then a else a | (a; @) (2)

and the usual meaning. It can be shown that addilmpastatement, e.gwhile ¢ do « to this language
would have no effect on its ultimate expressive power. Thils from our choice to model only finite
state systems. We do not include loops in (2), because oweooiis the mere existence of programs with
certain properties.

2.1 Semantics of programs

We define the semantics of programs in (2) as functions fratestto states. This can be regarded as
a denotational semanticfor (2), as known from the literature (see, e.g., [11]). Thgredient of this
semantics that is specific and most important to our studyngjaping describing executability of programs
as the subject to access restrictions. The notation belowira@luced to enable the concise definition of the
semantics. Lef = (P, ¥, r,w) be a fixed access control system for the rest of this section.

Definition 5 Substitutions are functions of the tyge — L(P). We record substitutiong in the form
[f(p)/p:p e P]. We often write[f (p)/p : p € Q] whereQ C P to denote\p.if p € () then f(p) else p.
If @ ={p1,... ,pn}, then we sometimes dendtf(p)/p : p € Q| by [f(p1)/p1,- .. . f(Pn)/Pn]-

A substitution f is extended to a function of type(P) — L(P) by the clausesf(1) = L and
fle = ¢) = f(p) = f(v). We omit the parentheses jf{¢) for ¢ € L(P). Given substitutionsf
andg, fg denotesfg(p)/p : p € P]. Ipy stands for[L/ple V [T /ple. Vpe stands for-Ip—p. If
Var(p) = {p1,... ,pn}, thendp andVyp stand fordp; ... Ip,p andVp; ... Vp,p, respectively.

Let P be the set of all programs iR. The function].] : P — (P — L(P)) is defined by the clauses:

[skip] = [p/p:pe€ P]=]]
[p:=¢] = lo/p]
[if p thenaelse ] = [(p A[al(p)) V (m¢ ALBI(p))/p:p € P]
[(;B8)] = [a]lB]

Proposition 6 If S grants all the accesa attempts, then the run ef from states C P takesS to state

{p: ([ed(p))(s) = 1}.



Every particular step of the execution of a program can bdezhiout only if the respective coalition has
the necessary access rights. E.g., for an assignmenty to be executed, the coalition needs the right to
overwritep and read the variables occurringgn We define this by means of the functipn.] : 2> x P —
L(P). [A, o] evaluates to a formula which expresses whether the coalitimay execute the program
[.,.] is defined by the clauses:

[A,skip] = T
[Ap:=¢] = z(p,4) Aulp,4)
[A,if p thenaelse f] = r(p,A) A(p = [A,a]) A (—p = [A,B])
[A, (BT = [A o] A[a]]A,F]

Proposition 7 S will grant coalition A C ¥ to execute program from states iff [A, o] (s) = 1.

Despite its ultimate simplicity, the language (2) can diéscevery deterministic and terminating algo-
rithm for access to a system the considered type, as longigassumed that a failed access attempt can
only bring general failure, and cannot be used to, e.g., dramclusions on the state of a system for the
purpose of further action. This restriction can be lifteée$he more general setting outlined in Subsections
4.2 and 4.3.

2.2 Programs which obtain access

Let S = (P,X,r,w) be a fixed access control system again, andldte the set of programs (2) in the
vocabulary P. Given a states C P and ap € P, the truth valuex(p, A)(s) andw(p, A)(s) indicate
whetherA can read and writg, respectivelyjn states. However, it may be tha#l currently does not have
some permission, but that can change the state in order to obtain it. In this section &f@eR 4 and

W, which denoteA’s ability to read/writeg by a possibly lengthy sequence of steps. Such sequences can
be encoded as programs of the form (2). The ultimate abitity4f to obtain the truth value ap € L(P)

can be understood as the ability 4fto run a programy € P that works out the value af and copies it

into some variable, such thatr(py, A) = w(pg, A) = T. It can be expressed in termsef] and[A, «]

as follows:

Rap = Ba e P)V([4, o] A ([el(po) & ) (3)

Similarly, the ability of A to drive the system into a state where some L(P) has a truth value ofi’s
choosing, can be expressed by the formula

Wap = (Fat,a; € P)V([A, ar] ATA a ] Afat]e Alar]-e) 4)

The universal closureg in (3) and (4) express that, ot and «; are runnable and produce the stated
results from all initial states. Note thRy andw 4 allow for destructive behaviour of the programs involved.
Obtaining the desired goal may involve changing the staissiply in a way whichd cannot undo. In the
next section, we consider a more expressive goal languagkiah we restrict the search to programs which
are not destructive.

The formulas (3) and (4) determine the ability afto execute a program which would achieve the
goal of reading or writingp. Quantifier prefixes likg3a € P) make it hard to evaluate (3) and (4)
directly. However, ifS is finite, these formulas have purely propositional eqerts, and therefore can be
computed mechanically, because there are only finitely rddfgrent programs in the vocabula®y modulo
semantical equivalence. Of course, the enumerating aetheograms in order to evaludtéx € P) is very
inefficient. In Section 3 we tre@, andW, as special cases of a more general accessibility operator. |
Appendix A we describe a way to evaluate this operator, amd@guentlyR 4 andw 4, without resorting to
quantifier prefixes of the forrfda € P), which is more efficient.
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3 A general accessibility operator

Extracting information and driving a system into a statehvdbme desired property are only the simplest
goals of access. One goal cannot be treated without regamtHers, because achieving a goal may have
destructive side effects which prevent another goal fromdachieved. That is why achieving composite
goals sometimes needs to be planned with all their subgoatsnd at the same time. In this section, we
consider a language for describing more refined kinds ofsscd@ur language allows us to express boolean
combinations of goals. Expressible goals include presgrihe truth value of some formulas while reading
or setting the truth values of others. Preservation is wstded as restoring the original value of the formula
in question upon the end of activities, and not necessagigplng the value constant throughout the run of
a program.

The accessibility operator in this language is written i tbrm A(®, +)) where A is a coalition,® is a
list of formulas inL(P) that A wants to read, an¢ is agoal formulawith the syntax

Ypu=L[T|plYAY[YpVY ®)
wherep denotes an atomic goal of one of the following forms:
e ', wherep € L(P); this is the goal of making true.
e , Wwherep € L(P); this is the goal of "realising” thap is true.

T and_L stand for a trivial goal, which calls for no action, and anclriavable goal, respectively. The goal
11 V 19 IS regarded as achieved if either or 9 are. The goal); A 15 is achieved if bothy, ands), are.
Atomic goals of the fornp may fail even ifA manages to obtain the truth valuegfin case it turns out to
be0. On the other hand a goal of the forv =@ can be assumed achieved without any action.

Example 8 The expressionl({p), (A7) V (7g A=¢')) denotes thatl wants to reagh andpreservethe truth value
of ¢g. If r(p, A) = g andr(gq, A) = w(q, A) = T, thenA can achieve its goal by means of the program

if g then pg:=p else (¢:=T; po:=p; ¢:=1L)

wherep, is a variable dedicated to storing the valugpoNote that the program restores the value after temporarily
setting it to1 in order to gain access tpin the else clause of the conditional statement. The goalribesl by
the simpler expressiod ({p), T), which does not requirg to be restored, can be achieved by the simpler program

(q:=T; po:=p).

The formulay in A(®,+) can express an arbitrary relatidd(py, ... ,p.;p1’,--- ,Pn’ ) between the
initial valuespr,... ,p, and the final valuegy’,... ,p,’ of the variables, ... ,p, of the system as a
requirement forA to satisfy. The main difficulty in implementing the relatidhin our setting is not in
computingR, but to the planning of the actions needed to access thélesia

Example 9 Let P = {p1,p2,p3}, A C X, r(p1,A) = —po, w(p1, A) = pa, r(pa, A) = w(p2, A) = T, x(ps, A) = p1
andw(ps, A) = —p,. From any state, caml achieve a state in which the valueaf is inverted?Yes; for example,
this program samples the variables in order to determing ivhan do, and inverts the value pf. A can run it from
any state.
if p2 then (
pl:=T,;
if p3 then (pl:=1; p3:=1) else (pl:i=_1; p3:=T)
)
else if pl then
if p3 then (p2:=T; pl:=1; p3:=1) else (p2:=T; pl:i=L1; p3:=T)
else (



p2:=T; pl:=T,
if p3 then (pl:=1; p3:=1) else (pl:i=1; p3:=T)

)

The program (except for the formatting) was produced by ouyriémentation [8].

In general, the goall(®, ) expresses the ability of the coalitioh to execute a program which reads
the values of formulas i@, while changing the values of formulas in order to make thegien represented
by ¢ hold. The simple goals expressediyy andw 4o can be expressed in this language:

Rap & A({p}, T),  Wap < A(0.7') AA(D,=9).

In Appendix A we show that the possibility (fot) to achieveA(®, 1)) can be decided mechanically and, if
A(®, 1)) is achievable, a program which can be used Ahyo achieve it can be synthesised.

To demonstrate this, we add the superscript, K to goal expressions4"-"-% (d,4)) expresses the
existence of a program which A can execute to read the formulas fr@mand enforce the relation repre-
sented by, provided that the initial state of the system satisfies1 V' = T' andwithout going through any
of the states in the list of staté§. We use the superscript triplé T, K to express achievability dfulyoals
which can arise after some action that brings partial kndgéeof the state of the system has already been
taken. The listK is used to prevent considering moving to states which haeady been explored. Now
the original formA(®, +) can be viewed as the special cae’? (@, ), in which nothing is assumed about
initial states. Further details are given in Appendix A.

Sometimes goals involve enabling the achievement of furgioals. A natural way to formulate and
to enable reasoning about such goals is to alb@sted occurrencesf the accessibility operatot in goal
formulasy:

pu=LITIp|A®Y)[PAD[PVY (6)

Example 10 For the conference paper review system, the question othehetviewewr of paperm can read reviewer
b's review before submitting his own, may be written as:

{a,b,c}(D, submitted(p,b) A —submitted(p, a)' A{a}({review(p,b)), submitted(p, a)l)).

This formula asksis it possible fora, b and the chaire to reach a state in whichb has submitted his review pfbut
a has not yet submitted hers, and from themnay readb’s review and then submit herd? this formula holds, we

can synthesise a program féd, b, c} to enable{a} to achieve((review(p,b)), submitted(p, a)') from such ars.
Surprisingly, the answer is “yes”. PC member careadb’s review, then become appointed a subreviewet laynd
submit her own review.

If @ is the empty list), thenAY"T>K" (&, B(®',+')) means thatl can reach a statein which A’s knowledge

of s will be sufficient for B to achieve(®’,’). In cased’ # (), we assume that it is possible to achieve
AVTE (&, B(®',4')) by (1) A sharing withB its knowledgef a reached described by appropriaté and

T upon passing the control 8 and then (II)B reading the formulas fron® for A. That is why we have

BV @ 4 @,y') = AV (@, B(/, )

whered’«® denotes the concatenation®fand®. SinceK is irrelevant to the description of the knowledge
of coalition A on S, it does not appear on the left ef above. Appendix A covers the extended syntax (6).

4 Some generalisations

Here we outline some more general forms of the model of acomssol described in the previous sections
and how our results about this model extend to these forms.



4.1 Concurrent access

Now let coalitionsA and B be running programa andg, respectively. Let the individual steps @fandg
be interleaved. LeB have priority overA in the following senseB can choose to execute as many steps
of 5 as it wishes, then allow the next stepwto be made and regain control. L@tpass control tax for
one step by executing the special commandep. Intuitively, this means thaB can monitor the behaviour
of A to the extent it can read the variabldsupdates and take advantage of whatever access rgbtants
B as a side effect of pursuing its own goals. Let us denote tiiie Df parallel composition ofc and s by
ol 5. We defin€e]«|| 8] for o and of the form(+y; skip) for the sake of technical convenience:

[o]|skip] = [o];

[all(p := »; 8)] = [¢/pll(lB)];

[afl(1f ¢ then Bi else B2; B3)] = [(¢ A [all(Br; B3)](p) V (= A[l|(B2; B3)](p)) /p : p € PY;

[l ((B1: B2); B3)] = [l (Brs (Ba: B3))];

[skipl|(sleep; )] = [B];

[(p := ¢; a)||(sleep; B)] = [¢/p][(cllB)]; ol " o)
. . ) - @ A |(a1;a3)||(sleep; D))V
L8 i when e e1se s as)l(steer: D = | (% x'[(a: m) | (s1eep: £)](7)

[((e1; a2); 3) [ (s1leep; B)] = [(on; (a5 a3))||(s1eep; B)].
The claus€[skip|/(sleep;3)] = [F] states thasleep has no effect when the program run Byhas

nothing left to do. To express this about subsequent paseitturrences afleep in 3, we extend.] by
putting [sleep] = [skip]. The executabilityfA, B, «||5] of a||5 by A and B can be defined like in the
case of programs run by individual coalitions. We skip thirikion here.

Now letpp € P satisfyw(pp, B) = T andw(pp, A) = L and assume thd? is trying to take whatever
opportunities appear whild is executinga, in order to obtain a copy of the truth value ¢fin pg by
executings. It is natural to assume th&t takes the advantage of doing as many things as it wish between
every two updatesi does. That is why the actions df and B in the course of their executing and
respectively are interleaved asdfj5. We denote the set of all programs that can possibly haverawes
of sleep by Psieep.

Using[.||.] and[.,.,.||.], we can describe, e.g. what it means for coaliti®rio be able to read some
propertyy of the state of the system by means of running proggfaim parallel with programx being run
by coalition A:

Rp(p, A, @) = (30 € Pareep)V([A, B, af| B] A ([l Bl (po) & ¢)) (7)

A fixed « implies an upper bound of the number sfeep statements thgt may need to execute in a
sequence in order to let complete its execution. This entails that, much like in tlasecof a single
coalition accessing the system, there are finitely m@anyodulo equivalence with respect to their effect on
the system, including their interaction with the fixed itdewed«. This means that the quantifier prefix
(38 € Psieep) in (7) can be eliminated and, therefoky; (¢, A, ) can be calculated. The more efficient
approach from Appendix A can be applied to this setting too.

/p:p€P|;

4.2 Access control with arbitrary atomic actions

So far our model allows only simple assignments to boolearaligs as the atomic actions. This brings
the level of abstraction down and makes some natural thiififysutt to program. For example, consider the
systemS = (P, ¥, r,u) whereP = {py,po} andu(p;, X) = w(p2, X) = p1 A po. ThenX can overwrite
each ofp; andp, at state{p;, p2}, but can never change the values of both variables, becauseome of
the values becomds the writing permission is lost. Hence, there is no way tapek: the transition from
state{p1,p2} to statel) without also allowing® to change some of the statés; } and{p,}, or even to
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leave S in one of these states and never proceed towérdshis means that coalitions cannot be forced to
maintain integrity constraints, like, e.g(s) = pa(s) for all s C 27, keep logs, or be saved from painting
themselves into a corner. This restriction can be removeithtbgducing high-level atomic actions instead
of the single variable assignments. In this section we atigaethe technique developed for assignments as
the atomic transformations on system state generalisébitvaay atomic actions.

Let our programming language have the atomic statemants . , a;, each denoting some transforma-
tion on the state. Ldfa;] and[ A, a;] denote the substitution which represents the transfoomagterformed
by a; in the sense of Proposition 6, and the rights required4do executes; in the sense of Proposition
7, respectively.[a;] and[A, a;] were defined in terms of andw for the case ok; being assignments in
Section 2. Now we assume that these givensubstitutions and formulas faer, ... , a;. Let us replace
w by the mappingg.,a;] : 2* — L(P),i = 1,... ,k, in systems which control access by atomic actions
ai, ..., ag. Letus retainc, which determines reading permissions. We obtain accegsotsystems of the
form

(P,S, 1, \AJA, a1],... , MA[A, az]).

Since for every subsitutiofie;] there is anv; of the form (2) such thafa;] = [«;], we can reproduce the
results from Sections 2-3 and Appendix A about such systenThis possibility shows that, despite its
restrictions, the language (2) and the techniques for inf@ections 2.2-3 have a fundamental role in the
assembly of the respective machinery for the analysis défagcess control described in terms of high-level
actions.

4.3 General knowledge states

So far we have allowed only pairs of the fortnT' to represent the knowledge states of coalitions. A
knowledge state can be viewed as a nonempty set of systezs.gatird/, T' can represent only some such
sets. In general, any set of system states described byséiadzlé formula fromL(P) can be viewed as a
knowledge state. This leads to a natural generalisatiod'of-* (. . .) to the formAx:X'(...) whereK" is
a sequence of formulag,, . .. , xx from L(P) such that- x;11 = x; andt/ x; = xit1, 0 < k, andyy is
X-

General knowledge states can be used to deal with the assanmipat a failed access attempt ony
causes the attempting coalitioh to learn that the (generally arbitrary) formuldp, A) does not hold,
wherex € {r,w} denotes the attempted action anis the accessed variable.

Conclusions

We conclude by listing some problems whose solutions canebged! from the techniques developed in
this paper.

Model checking (Synthesis of attacks)Given a concrete access control system of the fafoE, r, w)
the recursive equation (16) fot(®, ¢») from Appendix A provides an algorithm to calculate the apibf a
coalition A to achieve a general goal combining reading and writingaddess, and, if there is such ability, to
synthesise a program fat to achieve the goal. Hence it can be checked whether thensy&anits various
forms of legitimate access, leak of data or attacks whichlmmvritten as goals of the forrfib, +). In
Subsection 4.1 we show that the same problem is decidabihe isituation of the potential intruders acting
in parallel with legitimate users and taking whatever terappopportunities the actions of legitimate users
present.

Synthesis of access control system&iven a set of propositional variablés a set of agents and an
access control policy formulated as a logical theory abbt.) for A C ¥ on systems which have their
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state described in terms of the variables frémit can be decided whether an access control system of the
form (P, 3, r,w) which implements this policy exists and, if so, definitions ifs remaining components
andw can be proposed. This can be done by developing the equatdmfo full propositional definitions

of the instances of\(., .) involved in the formulation of the policy and establishitng tsatisfiability of the
policy with respect to the applications phndw at the respective states of the system treated as propagitio
variables. If the policy turns out to define a satisfiablerietsbn onr andw, any particular pair of mappings

r andw which satisfies this restriction can be chosen to complet@titess control system in a way which
implements the given policy.

In Section 4 we argued that the results from Sections 2-3 earejroduced for systems of a general
form where access is based on an arbitrary set of high-leti@rs. A representation of the respective access
operatorA(., .) like that in Appendix A for the basic case can be assembleau ftee components used in
this basic case. We proposed a way to reason about goals whadiie enabling some further goals to be
achieved. We also showed how to generalise the form of kriyelestates of coalitions used in Sections
2-3 and thus allow to describe that coalitions know arbjtremnstraints on the states of systems and that
coalitions can learn from failures.

The algorithms which follow from Appendix A are not optim&esults on the complexity of the prob-
lems on the class of all access control systems of the camsiderm might be practically unrepresentative,
because instances of extreme complexity usually have iitttommon with typical real cases. That is why
it would be interesting to describe subclasses which ekl kinds of regularity typical for real access
control systems first.
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A Calculating AV7-K(®, )

In this appendix we axiomatise the operatb¥-’"(®,+). The axioms we present can be used as re-
duction rules to decide whethet""">¥(®, ) holds, that is, whether, given an access control system
S = (P,%,r,w), and assuming that C ¥ knows that the current stateof S satisfiessNV = T, A
can obtain the truth values of the formulas fra@mat s and reach a state which is relatedstin the way
described byp. Furthermore A is supposed to be able to achieve its goal without (repeafisds to states
which match partial state descriptions from the kSt We assume thak is a set of subsets d? and, as
long as the variables whose valudsknows are all in’, X € K means thatd should avoid states such
thats NV = X. K becomes obsolete whehlearns the values of more variables.

In the rest of this appendix we assume tWat(o) NV = () for ¢ from ® and fory such thatp occurs in
1, because it is always possible to simplify away the deperidsrof goals on known variables. We denote
the elements ob by p1,... , ¢;.

The ability of A to achieve a goal®, ) is equivalent to the existence of a progranof the form (2)
for the actions of4, which A can execute without fail from states satisfying V' = 7' and achievé®, ).

The lemma below shows that, as far as program behaviour isecoed, we only need to consider
programs of a special form:

Lemma 11 Every progrann of the form (2) is equivalent to one with the syntax
« = skip | if pthenaelsea | (p:=1;a) | (p:=T; ) (8)

Proof: An assignmenp:=¢ can be replaced byf ¢ then p := T else p := L to avoid formulas other
thanT and_L on the right of.=. Furthermore, testing compound formulas in conditionatesnents can be
replaced by sequences of testings of the variables whialr ac¢hese formulas. Finally, using the associa-
tivity of (.;.) and the equivalence betwegif ¢ then ) else ay; ) andif ¢ then (ay; ) else (a2; ),
all sequential compositions can be made start with an as&gh -

Let the tripleV, T', K describe the knowledgenV = T of A andA’s having visited the states described
in the list K. Programsx of the form (8) whichA can use to achieve a go@b, 1)) can either start with a
conditional statement which samples a variable, or withssigament to a variable.

Sampling variableo € P could be worthwhile forA only if p ¢ V and A can be confident that it is
possible iffVoy rr(p, A) is true, where

ovr=I[L/p:peV\T|T/p:peT].

Samplingp increases the knowleddé 7' of Ato V U {p}, T", whereT" is eitherT', or T' U {p}, depending
on the sampled value. After a sampling stépcan forget the listK' of partial descriptions of the states
to avoid, because now it has track of one more variable wiiieke partial descriptions do not cover. The
increased knowledge o can be used to simplify its go&iP, ¢)). ® can be replaced either By /p|®,
which is

([L/pler, ... [L/pler)

or by [T /p]®, which is defined similarly, depending on the sampled vafue d@he goal formula) can be
simplified to eithew, |9 or o, T4, where

opr = [[7/pl@/® :p € L(P)|forT € {1, T}
for the same reasons. Hence we have the axiom:

\/ ( AVVIPETHRIATUARE ([T /p®, o) T1h) A

V,T,K
AVARLTATY (1L /p)®, 0, 1) A Yoy 1z (p, A) > = A7) 9)

pgV
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Assigning a variable can be worthwhile forA either ifp ¢ V, or if p € V, the assignment really
changes the state ¢f and does not tak& to a states such thatV’ Ns € K (this would indicate tha#i
has been awarely in that state ®fbefore). Again,A can be confident that the assignment is possible iff
Vov,ru(p, A) is true.

Assignment tg ¢ V increases the knowledge dfof the current state of by the variablep. It is safe
with respect to the godlb, ) only if the formulas from® do not depend op for their truth values, because
overwriting a variable whose value has not been sampledvarag: can destroy information on the initial
values of these formulast must observe similar safety with respect to the atomic goflse formg from
1. Let us use the formula

!
G = N\(L/plei < [T/plei)
i=1
to express that the truth values of the formulas. .. , p; from ® do not depend op, whose so far un-
changed value can be lost upon the assignment. Then we hadelltwing axioms about assigning vari-
ablesp ¢ V.

\/ AVUIRHTURLATOR (0, GA[[L/plo A [T /ple/% : ¢ € L(P)[Y)AVoyru(p, A) = AVTK(®,4)(10)
pgvV

\/ AVPPRTATH @ G A [[L/ple AT /ple/ : ¢ € L(P)]$) AVovaw(p, A) = AVTF (@, 9)(11)
pgV

Assignment tgp € V changes the knowledge of of the current state, because the known valug of
changed. Since we assume that variables with known valuestdoccur in®, nor in atomic goals of the
form 5 in ), we have the following axioms about such assignments:

\/ AVIMPLEAINEI (0 ) AVoyru(p, A) = AVTE(®,4), for T\ {p} ¢ K (12)
peV
\/ AVTURLEUTURE (&, 4h) A Yoy ru(p, A) = AVTK (@, ), for TU {p} ¢ K (13)
peV

Finally, A might be able to recognise that its g¢él, 1/) has been achieved. The following axiom states that
if © or its negation is a tautology, then reading its value carebanded as achieved:

(V()OZ \ V_‘<Pz) A AV’T’K(«O] yoee s Pi—1, Qi1 - - 7<pl>7 'Z/J) = AV’T’K(«O] P 7()0l>7'lp) (14)

Successive simplifications of the formulas franwhich are obtained upon sampling variabtesnd apply-

ing the substitution§T /p] and[_L /p] occurring in the corresponding axiom 9 should leatb goals where

¢ consists of such tautological formulas,Af can achieve its original goal at all. To realise whether the
current state of is related to its initial state as prescribed{yA should be able to evaluate the formula

[0/, 0/@ : o € L(P)]y.

Note that this formula is if.(P), while ¢ has the syntax (5). If applyingy,7 to this formula produces a
tautology, thend can conclude thap has been achieved. Again, successive simplifications afuhgoals
of the form® in ¢ are relied on to enabld to reach a state & where this holds. We have the axiom:

Vovrle/®',¢/@ ¢ € L(P)p = AVR((), ) (15)
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Note that in each of the axioms above the goal expressionseoleft of the main=- are simpler than those
on the right of the main=. This becomes clear if we define an orderitagon the superscripts of goal
expressions by puttingV, K) < (V' K') iff either V > V' orV = V' and K D> K' and notice that
superscripts occurring on the left ef in our axioms are smaller than superscripts occurring orrititg.
Furthermore, each of the possible cases for appearing igytiax (8) of programs: has a corresponding
axiom which describes the conditions in which armf the respective form can make its next step and the
way this step affects the goal: axioms (14) and (15) desthibeases whed can achieve its goal by doing
nothing gkip); axiom (9) covers the case when a program with a conditiomgh statement can do, and
axioms (10), (11), (12) and (13) are about programs stastiitly the four possible forms of assignment,
depending on the value assigned, and whether the variaditpnasl has been read in advance. That is why,
if A denotes the conjunction of the formulas on the leftofn (9)-(15), then

AV’T’K(«OI"-' a‘pl>a¢) s A (16)

definesAV" "X ((py,... ,¢),7) by induction onV, K and the length of the list of formulas to read.
The axioms (9)-(15) can used to write the Horn clauses of & Ipgpbgram to obtain a truth value for
AV'TK(®,4h) and, if this expression turns out to be true, to synthesiearé¢spectiver. Indeed, we have
done this [8].

The axioms above, except (15) apply without change to the wdmich includes subgoals of the form
B(®',4') (whereB C X need not be the same ds) To include such subgoals, we use that every formula
1) of the syntax (6) with such subgoals has an equivalent immiisive normal form of the formj, V 1)
where all the elementary conjunctionsn and none of the elementary conjunctiafshave occurrences
of subgoals of the fornB(®’,+’). ThenA can achievd®, v)) if either A achieveq®, v5), which means
that A should read all the formulas from itself, or if A achieves((), 1) which includes enabling some
other coalitions mentioned in the subgoals/efof the form B(®’,¢’) to continue and achieve’ x @, ')
this way finishing the job ofd. Let o denote the substitutiony 1 [¢/%’, ¢ /% : ¢ € L(P)] for the sake of
brevity. Then we have the following axiom:

( VBV TH@ « &, 9!) /B, /) : B C 5,0 € (L(P))*, € G(P)lorV

V,T\K
Vo ( A Vo WM) ) = AR (41 Vi) (A7)
i=1

whereG (P) denotes the set of the goal formulas with the syntax (6) basele vocabulary?. This axiom
subsumes axioms (15) and (14).

Alternatively, axioms (9)-(15) can be used to calculdte”{"} ((¢y, ... . ¢;). 1) by model-checking a
formula in the propositiongk-calculus (see e.g. [6]). Assume there are no subgoals dbtheB (', +)') in
1) for the sake of simplicity. Consider a system, whose statees the set of quadruplég, Ty, V, T such
thatTy C Vp C V C P andT C V, whereP is the vocabulary of a fixed access control system as above. A
quadrupleVy, Ty, V, T represents a state of knowledgeAfvhich consists of the fadty N sy = Ty about
the initial states, of S and the facV' N s = T about the current stateof S. The meaning o¥/, T'is like in
(9)-(15). Hence the quadruplg, Ty, V, T representsA’s knowledge of both the initial and the current state.
(The additionVy, Ty is not needed in these axioms, because they prescribe tdifginggn subgoals of the
form i and in formulas to read fronmk immediately each time the value of a variable becomes knjown.

Consider the:-calculus language with the modalitiésample p), (p:=_L) and(p:=T) for eachp € P.
Let the corresponding accessibility relatioR§.mp1e 5, Fp:— 1 andR,.—1 be defined by the clauses

Vovrr(p, A)Ap gV AVE=VoU{p} AV =V U{p}A
Rsa.mple p(VOaTUaVaT; VO”TUIaV’aTI) A T(; = TO \ {p} /\TI = T\{p}\/
Ty =ToU{p} AT =T U{p}
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Rp::L(‘/UaTOa VYaTa ‘/HaTéa VlaT,) A VUV,TW(pa A) A V(), = VO A T(’) — TU A V, =VU {p} A TI =T \ {p}
Ry—7v(Vo,To, V. T; V§, T5, V', T") <> Yoyru(p, A) ANV = Vo ATy =To ANV =V U{p} AT =T U {p}

Each of these accessibility relations represents an actiohehalf of A in which A either increases its
knowledge or both increases its knowledge and changes thentstate. The knowledge df is sufficient
to establish that its goal is already achieved iff the formul

l
Viove v 0/B ovre/T o € L(P) g A\ (Yov, myei V Vov, 1 -0:)
=1

is valid. Let the set of states from which can reach a satisfactory state p€]. Then the following
implications hold:
(p=L)X =X, (p=T)X =X, (samplep)T A[samplep|X = X, peP (18)

The [-] in the last formula means that should be prepared for any outcome of the sampling. The least
solution of the system of inclusions (18) is the set of thewdedge states in whickl can make a plan to
reach a satisfactory state without fail. Hen¢®"{T3 (o, ..., ¢;),9) is equivalent to the satisfaction of

l
¥ <V[0V0,TO<P/¢, ovre/P € L(P)]yp A ,/\1 (Yovo, 10 i VVUVO,TO_'QOi)> v
A 1=

\/P (((sample p) T A [sample p|X) V (p:=L)X V (p:=T)X)

pe

at state)), , V, T
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